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ABSTRACT Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of
the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop
regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain
their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2
helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to
residues aL251 and aV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the
region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation
trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel.
Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be
relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to
those identified by principal components analyses.

INTRODUCTION

The nicotinic acetylcholine receptor (nAChR) is currently

the most structurally and functionally well-characterized

member of the superfamily of ligand-gated ion channels,

which includes glycine, GABA, and serotonin receptor

channels (Corringer et al., 2000; Karlin, 2002; Lummis,

2004). It has a pentameric structure, comprising five subunits

arranged around an approximate five-fold axis. Subtypes of

nAChR are characterized by subunit composition and are

broadly divided into neuronal types (composed of homo-

pentamers or heteropentamers of subunits a1–10 and b1–9)

and muscle types (heteropentamers of subunits a, b, g or e,
and d). Numerous mutagenesis and labeling studies of the

receptor (Changeux et al., 1992; Corringer et al., 2000;

Karlin and Akabas, 1995; Lester, 1992) have established the

overall topology of the transmembrane (TM) domain of the

protein, identifying M2 as the pore-lining helix, shielded

from the surrounding lipid environment by the M1, M3, and

M4 lipid-exposed helices. More recent mutagenesis studies

have explored the nature of the conformational transitions

linking acetylcholine binding to the extracellular ligand

binding domain (LBD) to opening of the channel formed by

the TM domain (Cymes et al., 2002; Grosman et al., 2000;

Lester et al., 2004).

Cryolectron microscopy (EM) of the closed (Unwin,

1993) and open (Unwin, 1995) states of the Torpedo nAChR
yielded 9 Å resolution images of the inner M2 helix bundle,

enabling modeling and simulation studies of the M2-lined

pore in relationship to channel function (Adcock et al., 1998,

2000; Sankararamakrishnan et al., 1996). However, such

studies were limited by the resolution of the available struc-

tural data. More recently, a higher resolution (4 Å) structure

of the TM domain of Torpedo nAChR in the closed state has

been obtained (Miyazawa et al., 2003). On the basis of this

structure, it has been suggested that short loops between the

b-strands of the LBD interact with the M2-M3 loops of

the TM domain to form the main direct contact between the

LBD and the pore-lining M2 helices. It is also suggested

that rotation of the inner sheets of the LBD after ligand

binding is communicated through the a-subunit M2-M3

loops, resulting subsequently in same-sense rotation of the

aM2 helices.

The gate of the nAChR is thought to be formed by a ring

or rings of hydrophobic residues close to the center of the M2

helix bundle. A variety of experiments suggest the gate may

be close to the L99 (i.e., aL251; see Fig. 1 for M2 sequences

and numbering) ring (Bertrand et al., 1993; Corringer et al.,

2000; Lester, 1992; Lester et al., 2004). Model calculations

suggest that such rings of hydrophobic residues can form an

effective barrier to ion permeation (Anishkin and Sukharev,

2004; Beckstein et al., 2001, 2003; Beckstein and Sansom,

2003, 2004; Corry, 2004). Rotation of the M2 helices is

thought to open the channel by increasing the radius of the

pore and/or by increasing its polarity by moving polar side

chains into the pore-lining region. Rotation of only two

M2 a-helices is suggested to be sufficient to disrupt the

hydrophobic interactions between the five-helix M2 bundle,

causing the concerted collapse of the helices against the outer

wall, which results in pore widening by;0.3 nm (Miyazawa

et al., 2003).
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Although the structural data provide vital insights, an

atomic-level understanding of the gating mechanism of

nAChR is currently inaccessible by experimental methods

alone, although the propagation of conformational changes

from the LBD to the TM domain has been studied at residue-

level resolution (Cymes et al., 2002; Grosman et al., 2000).

Computer simulations complement structural studies by

elucidating some of the dynamical properties of the protein

and providing further clues to the dynamic mechanisms of

channel activation. There have been a number of simulation

studies of the TM domain components of the nAChR.

Individual M2 helices, as well as M2 helix bundles, have

been simulated in a variety of environments (Law et al.,

2000, 2003; Saiz and Klein, 2002, 2004) to explore the

dynamics of helix conformation, thus providing a comple-

ment to functional (Montal, 1995; Oiki et al., 1988) and

NMR studies of the M2 helix (Opella et al., 1999). More

recently, another model of a pentameric M2 helix bundle has

been proposed which appears to be consistent with NMR

data on the M2 helix peptide (Kim et al., 2004). These

studies have provided a detailed picture of the nature of the

M2 helix bundle in isolation.

In the intact receptor, the M2 helices are shielded from

direct contact with lipids, and instead are surrounded by the

outer (i.e., M1, M3, and M4) helices. The interior of the pore

is believed to be largely water filled (Hille, 2001). In this

work, we seek to elucidate the influence of the environment

provided by the outer helices, especially of M1 and M3, on

the structure and dynamics of the pore-lining M2s. The

simulation in this work therefore serves as a first approxi-

mation to the study of M2 dynamics within the framework of

a current proposed gating mechanism (Miyazawa et al.,

2003), in which the outer helices act as a relatively stationary

scaffold within which the M2 helices move. Additionally, we

have performed normal mode analyses (NMA) on the TM

domain using a coarse-grained anisotropic network model

(ANM) to identify possible low frequency collective

motions. Comparison of these motions with those extracted

from the molecular dynamics (MD) trajectory allows an

estimate of the extent to which the atomistic simulation

(which describes protein dynamics on a nanosecond time-

scale) was able to capture larger scale motions.

SIMULATION METHODOLOGY

The simulations were based on the deposited coordinates of the TM re-

gion of the nAChR (Protein Data Bank (PDB) code 1OED; Fig. 2 A). The

protonation states of all titratable residues were estimated and assigned using

methodologies for calculating pKa values of ionizable side chains imple-

mented in WHATIF (Vriend, 1990). These calculations suggested that

ionizable side chains with nonstandard charge states were restricted to

Glu and Asp residues, all located in the outer scaffold helices (i.e., D238,

E432, and E436 for chain a(A); D244 for chain b(B); E252 for chain d(C);

D238 and E432 for chain a(D); and E477 for chain g(E)). All titratable

residues in the M2 helices were predicted to be in their standard charge states

at pH ¼ 7. In addition to the TM domain, the simulation cell included 1486

octanes, 15,383 simple point charge waters, 259 Na1 and 266 Cl� ions.

MD simulations were performed under constant particle number,

pressure, and temperature conditions using the program GROMACS

(www.gromacs.org) version 3.1.4 (Lindahl et al., 2001). The GROMOS96

(van Gunsteren et al., 1996) force field parameters were employed for

the simulations. Temperature and pressure coupling were performed using

the scheme described in (Berendsen et al., 1984). A constant pressure of 1

bar and pressure coupling constant ¼ 1.0 ps was applied independently in

all directions. Water, octane, and protein were coupled separately to

a temperature bath at 300 K with temperature coupling constant ¼ 0.1 ps.

Electrostatic interactions were evaluated using the particle-mesh Ewald

method (Darden et al., 1993; Essmann et al., 1995) with van der Waals

FIGURE 1 Sequences of the M2 helices as defined in the 1OED PDB file.

The 99 residue (aL251) thought to lie at the gate (Lester et al., 2004) is in

bold, and the 139 residue (aV255) at the helix kink (this study) is underlined.

The extents of the M2 helices are aK242–aV271, bK248–bV277, dK256–

dV285, and gQ250– gV280.

FIGURE 2 (A) Structure of the nAChR TM helices and loops viewed

along the channel (z) axis from the extracellular mouth down toward the

intracellular side. Grayed regions were positionally restrained during the

MD simulations, whereas the colored regions underwent unrestrained

motions. Subunits are named as follows: A, a (red); B, b (blue); C, d

(yellow); D, a (red); and E, g (green). (B) Structure viewed perpendicular

to the bilayer normal, with the locations of the octane-water interface

boundaries in the initial simulation setup indicated.
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interactions truncated at 1.0 nm. Integration time steps of 2 fs were used.

Bond lengths were constrained via the LINCS algorithm (Hess et al., 1997).

Analyses of MD trajectories were performed using the GROMACS suite

of programs. Secondary structure analysis employed DSSP (Kabsch and

Sander, 1983). Helix-bending motions were analyzed using SWINK (Cordes

et al., 2002). Pore radius profiles were determined using HOLE (Smart et al.,

1996). Porcupine plots (Tai et al., 2001, 2002) of protein concerted motions

were acquired using the DYNAMITE web server (Barrett et al., 2004).

Visualization of system geometries and evaluation of protein secondary

structure were performed using VMD (Humphrey et al., 1996).

Born energy calculations (see below) were performed using the Adap-

tive Poisson-Boltzmann Solver program (Baker et al., 2001), for which

computational parameters were defined as follows: partial charges and

radii for the protein atoms were assigned using the PDB2PQR web server

(Dolinsky et al., 2004) based on the parameters of the AMBER force field

(Cornell et al., 1995); dielectric constants for water and protein were defined

to be 78.5 and 2, respectively, with the system temperature set at 300 K. The

ionic strength was that of a 150 mM 1:1 electrolyte, NaCl. The Born radius

of the Na1 test ion placed at various points within the pore was defined to be

0.169 nm (Rashin and Honig, 1985). The cell size dimensions around the

protein were 10 3 10 3 10 nm3.

NMA were performed within the approximation of the ANM. In this

approach (Atilgan et al., 2001; Bahar et al., 1997), each residue of the protein

is represented by the corresponding Ca atom, and interacts only with those

other residues residing within a specified cut-off radius, rC. The potential

between each interacting residue pair is described by a Hookean function,

with the sole parameter being the force constant g, which is taken to be

identical for all interresidue interactions. In this work, rC was defined to be

1.4 nm, whereas g was defined as 4.18 kJ mol�1 nm�2. In all of the NMA

performed, the M4 helices (each of which is unattached to the rest of its

corresponding subunit) were removed, as their inclusion resulted in large

and unphysical fluctuations which are unlikely to be present in the complete,

intact receptor.

RESULTS AND DISCUSSION

Simulation system

The simulation system was generated by embedding the

nAChR TM domain (Fig. 2 A) in a membrane mimetic

octane slab with an initial z-directional thickness of 3 nm

(Fig. 2 B). The regions above and below the octane slab, cor-

responding to the extra- and intracellular faces respectively,

were subsequently solvated with simple point charge

(Berendsen et al., 1981) water molecules. Water and octane

molecules were equilibrated during a 1-ns MD run with

positional restraints (force constant 1000 ¼ kJ mol�1 nm�2)

on all non-H protein atoms. Preliminary studies showed that

in the absence of any restraints, there was large scale struc-

tural drift of the outer helices that disrupted the integrity of

the TM domain. In particular, the Ca root mean-square

deviations (RMSDs) of the M4 helices rose to ;5.5 nm

and of the M1 and M3 helices to ;3 nm within 1 ns. This

is perhaps not surprising given the absence of the two

extramembraneous domains (i.e., the LBD N-terminal to

helix M1, and the intracellular domain located between

helices M3 and M4) from the current model. Thus, a 10-ns

‘‘production’’ trajectory was generated with positional re-

straints on the backbone atoms of the M1, M3, and M4

helices. The M2 helices, as well as the M2-M1 and M2-M3

linker loops were free to undergo unrestrained motions.

Conformational drift and residue flexibility

The M2 helices remain reasonably stable during the course

of the simulation, undergoing little structural drift as

evidenced by the formation of a plateau after ;4 ns in the

RMSD plot of the Ca atoms of all unrestrained segments

(Fig. 3 A, black line). Decomposition of the total RMSD into

contributions from the individual subunits (shaded lines,
Fig. 3 A) reveals the approximate order in which the sub-

units attain structural stability. The RMSDs of chains B to E

each exhibit a single stepwise increase between 1 and 3 ns,

whereas chain A exhibits a relatively large stepwise increase

at ;4 ns, which is responsible for the minor ‘‘bump’’ in the

total RMSD at the same time. The behavior of the total and

subunit-specific RMSD, and in particular their tendency to

undergo single, discrete increases during the run, may be

explained by analysis of their secondary structure using

DSSP with respect to simulation time (data not shown). The

H-bonding patterns of the M2 helices are largely retained

during the trajectory, apart from some disruption at the

C-termini ends of the M2 from the B (b-subunit) and C

(d-subunit) chains, with more significant uncoiling at the

C-termini of M2 A (a), D (a), and E (g). Additionally, there

is an uncoiling of a single helical turn at the C-terminus of

the M2 of chain A (a) at;4 ns, and collapse of this M2-M3

loop against the M1. Thus, the RMSD plots and DSSP

analyses both suggest that the M2 bundle has apparently

settled into a local energy minimum in conformational space

after ;4 ns of simulation, and for the purposes of current

analyses the trajectory is assumed to be stable between 4 ns

and 10 ns.

The relative flexibility of various portions of theM2 helices

and the M2-M3 loops is revealed by the root mean-square

fluctuations (RMSF) plot of the unrestrained segments (Fig. 3

B) averaged over the last 5 ns of the trajectory. The highest

flexibility is exhibited by the loops connecting theM2 helices

to the outer scaffold, especially the M2-M3 loops. It is

noteworthy that the M2-M3 loops of chains A and D (the two

a-subunit M2s) exhibit the highest fluctuations of the entire

bundle. This may reflect a requirement for their flexibility in

transmitting structural changes at the ligand binding sites to

the aM2s after ligand binding. Furthermore, fluctuations in

the M2-M3 loops are shown to be correlated with rotations

and bending motions of the M2 helices, which in turn have an

impact on the pore dimensions, as discussed below.

We have determined the relative flexibility of the TM and

extramembranous domains of the protein via calculation of

block averaged mean square-fluctuation (MSF) plots (Far-

aldo-Gómez et al., 2003, 2004) taken for the last 5 ns of the

simulation for the M1-M2, M2-M3, and M2 helical regions

of the combined bundle (Fig. 3 C). This analysis demon-

strates that the M2-M3 loops exhibit the highest overall

flexibility, followed by the M1-M2 loops, and finally

the relatively rigid M2 TM helix regions. The plateau of

the MSF plots after time windows of 2.5 ns suggests that the
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motions of the unrestrained regions of the protein are

reasonably well converged, and thus the structures sampled

within the trajectory during this simulation time lie within

a local minimum on the energy surface. Examination of the

MSF plots for the individual subunits (data not shown) con-

firms that the highest fluctuations are for the M2-M3 loops of

the a-subunits.

M2 helix kink and swivel

Inspection of the conformations of the M2 helices during the

trajectory revealed several structural characteristics which

differ markedly from that of the initial crystal structure (Fig.

4 A). The overall a-helical structure is maintained within the

timescale of the trajectory, as evidenced by analysis using

DSSP (discussed above). However, all of the helices exhibit

a more significant kink (bending) compared to that of the

initial EM-acquired structure, with a hinge point near the

pore center. This is in qualitative agreement with the results

of earlier MD simulations of isolated M2 helices (Law et al.,

2000), which revealed a propensity of M2 for helix bending

FIGURE 3 (A) RMSD of the Ca atoms of the five M2 helices from their

initial conformations with respect to simulation time. RMSD curves for the

individual M2 helices are coded as follows: thick black solid line, averaged

over all subunits; black dashed line, M2a(A); shaded dotted line, M2b(B);

shaded solid line, M2d(C); black dotted line, chain M2a(D); and shaded

dashed line, M2g(E). (B) Root mean-square fluctuation (RMSF) of the Ca

atoms of the five M2 helices and M2-M3 loops. Chain identifiers for the

atoms are shown along the x axis; for each chain, the N-terminus of the M2

helix is at the left, and the C-terminus of the M2-M3 loop is at the right. The

residue numbers on the x axis are as follows: 1–29¼M2 andM2-M3 loop of

subunits a(A); 30–58 ¼ subunit b(B); 59–87 ¼ subunit d(C); 89–116 ¼
subunit a(D); and 117–145 ¼ subunit g(E). (C) Block analysis of MSFs

(calculated for Ca atoms). For the final 8 ns of each simulation, average

MSF values were calculated for time windows of 0.1, 0.25, 0.5, 1, 2.5, and

5 ns. MSF values were evaluated separately for the M1-M2 (solid shaded

line), M2-M3 loops (dashed black line), and for the M2 helical regions (solid
black line).

FIGURE 4 (A) Ca trace diagrams of helix M2a (chain A) from the cryo-

EM structure (1OED) and from the simulation at 0, 0.5, 1, 5, and 10 ns. The

approximate location of the hinge (residue aV255) is indicated by an arrow.

(B) Polar plot representation of the kink and swivel angles sampled by the

five M2 helices during the last 5 ns of simulation: black, M2a(A); red,

M2b(B); green, M2d(C); blue, chain M2a(D); and cyan, M2g(E). The kink

angle is plotted in the radial axis and the swivel angle on the circumfer-

ential axis. The swivel angle is defined as the rotation of the posthinge helix

vector in the plane perpendicular to the prehinge vector relative to a zero

point, set at the Ca of the hinge residue, when viewed along the helix from

the C-terminal (see Cordes et al., 2002, for further details).
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in the same region. It also correlates nicely with the results of

F-value analysis (Cymes et al., 2002), which are indicative

of bending and/or swiveling around a residue in the center of

M2. Kinked M2 helices have been included in a number

of earlier models of the nAChR pore (e.g., Tikhonov and

Zhorov, 1998).

The nature of the M2 helix hinge-bending motion in

the simulation was quantified using methods developed to

analyze proline-induced hinges in TM helices (Bright et al.,

2002; Cordes et al., 2002). For each helix, an initial analysis

was performed on the last 5 ns of the trajectory to identify the

average hinge point. Subsequent analyses on each helix were

then performed with prespecified hinge points, taken as the

trajectory-averaged hinge residue. The hinge points for all of

the helices, with the exception of M2d (chain C), lie near the

center of the pore in the vicinity of the hydrophobic residues

aL251 (L99) and aV255 (L139), identified as the sites of the

proposed hydrophobic gate by (Lester et al., 2004) and by

O. Beckstein and M. S. P. Sansom (unpublished) respec-

tively. For M2d (chain C) the automatic location of the hinge

point, was complicated by the presence of dP279 near the

extracellular side of the helix bundle. For the purposes of

comparison, however, we have examined the distortion

characteristics of this helix at the same predefined hinge point

as those of the others. Having defined the hinge points, we

analyzed the kink and swivel angle conformational sampling

of all five helices for the final 5 ns of the simulation. The polar

plot (Fig. 4 B) shows that the helices remain in a bent geome-

try throughout the simulation, but there are differences in the

nature of the bending motion for each helix.

M2a(A) exhibits the highest kink angle, varying from 15�
to 45�, with an average of 30�. Helices M2b(B), M2a(D),

and M2g(E) have somewhat lower kink angles, with

averages of ;20�. Disregarding the proline-induced kink,

chain M2d(C) exhibits the lowest bending, exceeding no

more than 15� in general. Examination of the swivel angles

reveals that helices M2a(A), M2b(B), and M2g(E) bend

anisotropically, favoring a swivel angle range of ;60�.
M2a(D) samples a wider range of swivel angles (;90�),
whereas M2d(C) appears to bend isotropically, with no

apparent preference for particular regions of swivel space.

All of the helices exhibit swivel angle sampling in the same

region of the polar plot. The anisotropic sampling of kink-

swivel space may be understood by visual inspection of the

structure, which reveals that all of the helices except M2d(C)

bend toward the outer helices, with the C-terminal end

toward M3 and the N-terminal end toward M1, whereas the

apex of the kink points face toward the pore center. Helix

M2d(C) apparently remains nearly unkinked throughout the

simulation, deviating little from its initial structure. Although

the differences in the average kink/swivel conformations of

the five helices in the current simulation might be expected to

be due to differences in the primary structures of the

subunits, it is interesting to note that MD simulations of

homopentameric M2d bundles (Law et al., 2003) also

revealed nonequal average kink angle distributions for each

of the five helices. It is possible that, for both the current and

previous simulations, such an asymmetry in helical con-

formations may be due to insufficient simulation time, and

that on (for example) millisecond timescales the kink/swivel

conformations for each helix may converge to a single state.

Possible implications of asymmetric motions are discussed

below. Additionally, for the heteropentameric M2 bundle

studied currently, differences in primary structure, especially

in the M1 helix (see below), may well impart genuine

differences on the M2 helical conformations and motions

independent of timescale. In addition to structure, asymme-

tries also arise for the dynamical properties of each subunit’s

M2, as discussed later.

We note that the region of helix kinking does not

correspond to any known helix-distorting sequence motif.

Thus, for the nAChR, there may be several external factors

which influence the kink-swivel behavior of the helices.

Inspection of the motions of the M2s show that they shift

closer toward the M1 and M3 helices in the early stages

of the trajectory, possibly due to hydrophobic interactions

between the M2s and the outer helices. However, for all

subunits, a relatively bulky hydrophobic side chain near the

center of M1 (aF225 for chains a(A) and a(D), I for

b231(B), d239(C), and g233(E)) moves and points directly

toward the M2 hinge point and may therefore cause, or

enhance, the degree of M2 helix bending due to steric re-

pulsion. It is noteworthy that reverse mutagenesis studies of

the M1 F and I residues (in which the F and I residues were

swapped between the subunits; Spitzmaul et al., 2004)

revealed alterations in channel gating kinetics, but had no

impact on ligand binding kinetics. Thus, given that the

current simulation suggests a role for their side chains in

causing M2 helical bending, it is possible that the extent and

nature of M2 helix bending may have an impact on gating

kinetics, although the mechanistic rationale for this requires

further study. Additionally, for chains a(A) and a(D), there

are persistent hydrogen bonds between the hydroxyl group of

the aS249 (M2, S69) side chain and the backbone carbonyl of

aL235 (M1) near the intracellular side, which may further

help stabilize the M2 in a specific bent geometry. Finally, the

motion of the M2-M3 loop is correlated with the degree of

helix kinking (see below). Overall, then, there are forces

driving theM2s toward the outer helices at the helix ends, and

steric repulsion driving them toward the pore near the center.

These combined forces create a tension which enhances the

M2 bending angles from their initial values. For chain C,

however, the tension is alleviated by pronounced bending at

the proline residue near the extracellular side, preventing any

more significant bending near the hydrophobic gate region.

The current simulation therefore suggests an important role

for the outer helix M1, and especially of the two residues

discussed above, in imparting specific, anisotropic bending

conformations upon the M2s, which may in turn influence

their role in possible gating mechanisms.

Nicotinic Receptor M2 Helix Dynamics 3325

Biophysical Journal 88(5) 3321–3333



Water and H-bonding to the M2 helices

In addition to hydrophobic interactions and specific residue-

to-residue contacts with the M1 and M3 helices, the kinked

conformations of M2 may also be stabilized by water-to-

helix hydrogen-bonding interactions at or near the hinge

point which compete with intrahelical H-bonds. To de-

termine the existence of such hinge-stabilizing H-bonds

between water and the protein backbone, we have estimated

the water-to-backbone H-bond persistence ratio (RH) for the

final 5 ns of the simulation for each residue of all five M2

helices in the vicinity of the hinge point. The persistence

ratio is defined as

RH ¼ NAVERAGE

NTOTAL

;

where NAVERAGE is the average number of water-backbone

H-bonds per timestep and NTOTAL is the total number of

unique H-bonds during this period. Thus, RH may be

regarded as proportional to the average time each unique

H-bond is maintained during the trajectory segment; a

‘‘perfectly persistent’’ H-bond has RH ¼1. If the backbone

traces of the M2 helices are color-coded according to ranges

of RH values (Fig. 5) then persistence ‘‘hotspots’’ are

evident. For chain M2a(A), two H-bond persistence

‘‘hotspots’’ were identified, at aL251 (L99) and aV259

(V139). These are both pore-facing residues ;1 helical turn

on either side of the hinge point. The profile for chain

M2b(B) shows H-bond longevity at bF262, also ;1 helix

turn displaced from the hinge point. As previously discussed,

chain M2d(C) exhibits the lowest average degree of helix

bending if the hinge point is defined to lie near the pore

center. The comparatively low H-bond longevity is consis-

tent with the small relative lack of helix distortion in this

region. However, significant distortion near the extracellular

end due to a Pro results in exposure of the backbone carbonyl

to the pore waters, exhibiting a hotspot near this region. For

chain M2a(D), a single hotspot is located at aL258 (L169),

;1 turn of the helix after the hinge point. Chain M2g(E)

exhibits high H-bond persistence at gL260 (L99) and gA261

(A109), i.e., one turn of the helix before the hinge point in the

M2 sequence. Taken together, these results suggest that there

are somewhat stronger, more long-lived H-bonds between

water and the M2 backbones often one helical turn before the

actual hinge point. Pore waters were found to form transient

H-bonds mainly to backbone carbonyl O, with the highest

H-bond persistence located at residues most exposed to the

solvent environment due to deviations from helix linearity,

and which are therefore most susceptible to competitive

H-bonding from water. This suggest that water-backbone

H-bonds may play a role in stabilizing the kinked conforma-

tion of the M2 helices (as has been seen in water soluble

proteins; Barlow and Thornton, 1988) although other factors

likely have a greater influence on the conformation of the

M2s.

Pore profile and cation permeation energetics

The possible influence of the M2 helix kinking on the

function of the channel may be analyzed in terms of pore

radius profiles. The structures of the aM2s at 10 ns are

shown in Fig. 6 A, alongside a diagram of the pore-lining

surface, and it may be seen that the hinge points lie adjacent

to the major constriction in the center of the pore (at aV255,

i.e., V139). The radius profiles of the channel at equidistant

points along its axis for both the initial cryo-EM structure

and averaged over the final 5 ns of the MD simulation

(dashed line) are compared in Fig. 6 B. For the cryoEM

structure, two constriction points are situated at aS248 (S69)

and aL251 (L99), with a third constriction located at aV255

(V139). The constrictions at aL251 and aV255 correspond

to the proposed hydrophobic gate, and free energy profile

calculations for a Na1 ion within the M2 pore (O. Beckstein

and M. S. P. Sansom, unpublished) indicate a significant

energy barrier (;8 kT) in this region. For the simulated

structure, the constriction at aS248 is lost, being replaced by

two constriction points at aL251 and aV255, with the latter

showing the lowest average pore radius (;0.26 nm).

However, as seen in Fig. 6 B, the pore dimensions at these

points fluctuate between 60.05 nm, so that at certain times

during the trajectory it is possible for the relative radii of the

two constriction points to be equal or even reversed. Thus,

the pore radius calculations identify two regions of possible

channel gating during the trajectory. The presence of

multiple constriction regions may be responsible for possible

ambiguities in identifying a unique residue of each subunit

which forms the channel gate.

Although quantification of the physical dimensions of the

channel provides a qualitative insight into its permeability to

ions, such an analysis by itself neglects the electrostatic con-

tributions to this process. The polarity of pore-lining atoms

is an important factor in ion conduction for acetylcholine

receptors, since the hydrophobic girdle near the center of the

channel is proposed to act as an energetic barrier to ions by

means of water exclusion (Beckstein et al., 2001; Beckstein

and Sansom, 2003, 2004). Thus, to obtain a preliminary

FIGURE 5 Tube representations of the central segments of M2 helices

a(A), b(B), d(C), a(D), and g(E), color graded according to their water-to-

backbone H-bond persistence (RH; see text for definition), ranging (on the

RGB scale) from red ¼ high RH to blue ¼ low RH.
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quantification of the energetics of trying to move a cation

through the (closed) Torpedo nAChR channel, we have

computed the free energy of solvation (DGsolv, or Born

energy) of a Na1 ion at predefined positions along the pore

axis. This calculation was performed within the framework of

the continuum electrostatics model described by the Poisson-

Boltzmann equation and implemented in the Adaptive

Poisson-Boltzmann Solver code (Baker et al., 2001).

Born energy profiles were compared for four structures: the

experimental EM structure (after energy minimization), as

well as three structures acquired from the final 5 ns of the MD

trajectory. The latter were chosen on the basis of constriction

point radius, RCONSTRICT, i.e., the pore radius in the vicinity

of the aV255 (V139) constriction. Three structures were

selected, with RCONSTRICT¼ 0.26 nm, 0.19 nm, and 0.29 nm.

These structures had RCONSTRICT values close to, below, and

above the mean for the simulation, respectively.

All of the Born energy profiles (Fig. 7) exhibit significant

(i.e.,� kT) peaks in the region of the aL251 (99) and aV255
(139) rings, effectively constituting energetic barriers to

cation permeation, and providing confirmation that the initial

experimental as well as MD snapshot structures describe the

channel in a closed state. Comparison of the Born energy

profiles with the corresponding pore radius profiles (not

shown) shows a close correspondence between Born energy

barriers and pore constrictions (as might be anticipated).

For the structure whose pore profile approximates that of

the trajectory average (i.e., the RCONSTRICT ¼ 0.26 nm

snapshot), the permeation barrier height is ;15 kT, com-

parable to that of the experimental structure with ;18 kT.
For the RCONSTRICT ¼ 0.19 nm structure, the barrier height

is ;28 kT. This suggests that although on average the

permeation barrier during an MD simulation is not sig-

nificantly different from that of the EM structure, the barrier

may fluctuate significantly. At the positions of the pore lined

by the hydrophobic side chains of residues aL251 (99) and

aV255 (139), the cation solvation energy increases with de-

creasing pore radius. These observations are consistent with

the expectation that narrower regions of the pore, if lined by

apolar side chains, present a more hydrophobic environment

in the neighborhood of the cation, increasing the energetic

cost of placing it there. Thus this analysis illustrates the

principle of hydrophobic gating adopted by this and other ion

channels (Beckstein et al., 2001; Beckstein and Sansom,

2004).FIGURE 6 (A) Simulation snapshot of the M2 and M1 backbone atoms of

the two a-subunits at 10 ns, with the pore-lining surface determined using

HOLE (Smart et al., 1996), and constriction point close to aV255 indicated

by an arrow. Black spheres near the M2 centers indicate the Ca atoms of

kink points determined using SWINK (Cordes et al., 2002). Residues of

interest are shaded in pale gray (see text). Other subunits have been omitted

for clarity. (B) Pore radius profile as a function of position along the pore (z)
axis. The thick black line shows the pore radius profile for the initial (1OED)

structure, and the solid shaded line indicates the mean pore radius profile

(6 SD) averaged over the last 5 ns of simulation.

FIGURE 7 Sodium ion (Na1, Born radius 1.69 Å) solvation free energy

(Born energy) profiles for the experimental structure A (solid black line)

and for three snapshots from the latter half of the simulation for which

RCONSTRICT¼ 0.19 nm (solid shaded line), 0.26 nm (dashed black line), and

0.29 nm (dashed shaded line), where RCONSTRICT is the pore radius in the

vicinity of the aV255 (V139) constriction.
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Although for hydrophobic regions it is generally expected

that the Born energy increases with respect to the narrowness

of the confinement, the relationship between pore width and

cation solvation energy may be more complex for regions

of the channel lined by hydrophilic or charged residues. In all

of the Born profiles presented here, an energy well exists

at position aE262 (209), likely due to the stabilization of

the Na1 by the ring of negatively charged side chains

contributed from the a- and b-subunits. This stabilization is

more significant for the initial experimental structure, which

has a well depth of �5 kT, and is less so for the MD derived

structures, with well depths of from;�1 to �2 kT. We note

that the pore radii at the 209 position for the MD structures

are all greater than the experimental structure, thus placing

the side chains further away from the Na1 pathway and

reducing the favorable cation-anion interactions. Although in

this work the electrostatic contributions from the ligand-

binding domain are absent, it has been shown that for the a7

nAChR receptor the stabilization described above for the

Torpedo nAChR appears to be present as suggested by an

energy well at 209, although the presence of the large

extracellular (ligand binding) domain introduces a plateau of

negative Born energy on the extracellular side above this

position (Amiri et al., 2005).

The results discussed above therefore reveal that there

are three points along the channel that may influence ion

permeation: the L and V residues at the hydrophobic gate

region forming an energetic barrier, and (perhaps less

important) the negatively charged region forming a some-

what favorable electrostatic environment for cations. This

suggests specific requirements for conformational changes

that must occur during channel opening that will favor cation

permeation, namely, enhancement of the pore width at 99 and

139 (and/or rotation of the M2 helices so that more polar

backbone atoms line the pore) and reduction in the pore

width at 209 to optimize possible Na1 side-chain inter-

actions. Helical-bending motions of the M2 helices is one

way by which the above may be achieved; a lesser bending

angle may increase the pore radius near the hydrophobic

center, and simultaneously reduce the width at the charged

209 position. It is interesting therefore to note that helix

bending is one of the concerted motions identified during the

MD simulation (see discussion on principal components

analysis below).

We note that the influence of atomic-level interactions

between the cation, water, and pore atoms, as well as entropic

effects, have been neglected in the current model, averaged

out by a continuum representation. These will certainly have

an impact on the value of the solvation energy, especially for

relatively narrow, hydrophobic regions of a pore. Atomic-

level free energy calculations (such as umbrella sampling

methods) are needed to obtain more quantitative results. We

have performed investigations of the relationship between

continuum models and atomic-level free energy calculations

for simple models of channels (Beckstein et al., 2004), the

results of which suggest that continuum models may be

adequate for illuminating the trends in the Born energy as

a function of pore width and polarity.

Principal components analysis

We have investigated the possibility of concerted motions

within the individual M2 helices using principal components

analysis (PCA) (or essential dynamics; Amadei et al., 1993),

enabling the visualization of the directions and extents of the

principal motions of Ca atoms within the protein which

move in a correlated fashion for a particular eigenvector

projected along the trajectory. The first three eigenvectors

account for ;45% of the motion observed in the last 5 ns of

the simulation trajectory, with cosine contents (Hess, 2000)

of 8%, 39%, and 3%, respectively. These eigenvectors for

the M2a(A) helix (along with its attached M1-M2 and M2-

M3 loops) are shown in Fig. 8, A–C. All three eigenvectors
indicate concerted motions between the extramembranous

loops (and the M2-M3 loop in particular) with movements

of the helical region atoms. However, the particular helical

motions differ between the eigenvectors. The first eigenvec-

tor (EV1) shows unidirectional motion of the helical

segments, all of which move toward the direction of the

outer helices, with some bias toward the extracellular side,

corresponding to collapse of M2 against the rigid scaffold.

EV2 exhibits intrahelical movements, with downwards

motions for the upper half of the helix, and upwards motions

for the lower half, resembling a helix-bending motion, as

FIGURE 8 (A–C) Porcupine plots (Tai et al., 2001, 2002) of the first three

eigenvectors describing the motion of the M2 helix plus loops from chain A.

(D) Porcupine plot of the M2 helix bundle.
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identified by SWINK analysis (discussed above). Finally,

EV3 suggests rotational motion of the entire helix. Similar

analyses for the other M2 helices reveal qualitatively similar

results (not shown). In sum, the first three EVs indicate that

the motions of the M2-M3 linker loop are highly correlated

with bending, translational, and rotational motions of the M2

helix relative to the scaffold helices. Since the mechanism of

gating is currently proposed to involve such motions, this

analysis reinforces the notion that conformational changes

at the LBD may be transmitted to the pore via the M2-M3

linker and furthermore suggests that helix bending may also

play a role in gating. In particular, helix-bending motions

may play an important role in channel gating by altering the

height of the permeation energy barrier at the hydrophobic

girdle as well as the depth of the energy well near the extra-

cellular end of the TM domain, thus mediating the degree of

interaction between cations and the pore.

PCA was also performed on the entire five M2 helix

bundle, excluding the extramembranous loops to elucidate

the more subtle motions between the helical regions,

discarding the rather large correlated motions of the more

flexible regions. The resultant first eigenvector (cosine

content of 23%) is shown in Fig. 8 D. As with the PCA of

the individual subunits, several motions may be identified.

The two a-subunits and the g-subunit appear to rotate in the

same sense. The b M2 also undergoes some degree of

rotation, to a lesser extent. The d-subunit, however, mainly

undergoes to-and-fro translational motions relative to the

outer helices. The helices therefore rotate asymmetrically, as

might be expected from the heteropentameric nature of the

bundle. Dynamical asymmetry has also been observed in

simulations of a homology model of the homopentameric a7

LBD (Henchman et al., 2003) and in simulations of the

intracellular ligand-binding domain of inward rectifier (Kir)

channels (Haider et al., 2005). These results suggest that

asymmetric motions may be inherent in multimeric ion

channels regardless of subunit composition. If so, this might

suggest that a fully concerted model of conformational

change (Galzi and Changeux, 1994) may not apply to ion

channel gating, and that instead sequential propagation of

conformational change through the constituent subunits

(Cymes et al., 2002; Grosman et al., 2000) may be a more

appropriate model, as suggested by inter alia (Lester et al.,

2004).

The rotational motion apparent in EV1 is reminiscent of

the rotation of the M2 helices in the proposed gating model;

inspection of the positions of the constriction point V side

chains between the two extreme projections of EV1 shows

their motion away from the center of the pore, and HOLE

calculations of the pore radius shows a change of ;0.2 Å

between the two structures. However, caution should be

exercised in interpreting the results of the PCA. The short

timescale of the current simulation is such that an actual and

complete channel opening event is unlikely to be observed.

Indeed, the pore profile calculation shows that, although

there is some fluctuation of the minimum pore radius during

the trajectory, the channel is essentially in a closed state

throughout. Thus, the PCA results are simply indicative of

the intrinsic flexibility of the gate region of the TM domain.

Nonetheless, it is in principle feasible that, without the

presence of the LBD to hold the M2-M3 loops in place, there

would be greater freedom for the M2 helices to fluctuate

between closed and open states, and thus it is possible that

even on a 10 ns timescale motions which are important for

channel gating may be observed.

Normal mode analysis of a coarse-grained model

A limitation of the preceding analysis is the relatively short

timescale (10 ns) of atomistic MD simulations compared to

that of gating transitions within the (intact) nAChR. We have

attempted to estimate the extent to which the atomistic

simulations are able to describe low frequency collective

motions (which may be relevant to our understanding of

channel gating) by using a more coarse-grained model of the

protein motions. Accordingly, we have applied NMA within

an ANM to identify possible global modes for the motions of

both the initial (i.e., from cryo-EM) and final MD (i.e., t¼ 10

ns) TM structures to obtain qualitative insights into their

collective motions as well as to serve as a comparison with

results of PCA analysis of the MD simulations discussed

above.

Although the use of a coarse-grained model with a uniform

interresidue interaction parameter results in the loss of

detailed information about smaller scale, local fluctuations

(which are usually side-chain specific), it has been shown

(Atilgan et al., 2001; Bahar et al., 1997) that slow, large-scale

collective motions are mainly dependent on the tertiary

structure of the protein and may be adequately described by

a simple network model.

Despite these advantages, it is unclear whether, in general,

NMA-based methods are entirely suitable for studying

motions related to the function of ligand-gated ion channels.

There are likely to be significant energy barriers separating

the closed and opened states due to mechanical constraints

imposed by the extracellular domain, resulting in anharmo-

nicity of the energy surface. However, in the present case,

such energy barriers are missing due to the exclusion of the

LBD in the model. The energy surface may therefore be

anticipated to exhibit a lower degree of anharmonicity

compared to that of the full length receptor, and hence

motions in the TM domain which contribute to channel

function are more likely to be amenable to study by NMA

methods. Obviously, barriers to gating are still likely to exist

owing to internal interactions within the TM domain, and an

actual channel opening motion may not be revealed by

NMA. Nevertheless, previous studies on ion channels such

as MscL (Valadie et al., 2003) and KcsA (Shen et al., 2002)

have shown that NMA is capable of revealing motions

relevant for gating despite the lack of channel opening
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motions. In this work, therefore, the key assumption is that

the collective motions of the regions with the lowest

deformation energies, in the absence of the LBD mechanical

constraints, are relevant for biological function.

We note that for the MD simulation, the M1 and M3

helices were restrained. However for the ANM model no

such restraints were applied. Thus the results obtained from

NMA are unlikely to correspond exactly with those from

the MD, in that the NMA will reveal motions of the outer

helices. However, the motions of the M2 helices (as with

all parts of the protein) are governed entirely by their

connectivities to other regions, namely the M1 and M3

helices, as well as neighboring subunits. These are constant,

and are exactly the same whether the outer helices are

motionally restrained or not. Thus the character of the

motions of the M2 helices relative to a fixed point (e.g., the

pore center) should not differ significantly. For the purposes

of comparison with the MD/PCA results, we focus ex-

clusively on the motions of the ‘‘free’’ components (i.e., the

M2-M3 loops, the M2 helices, and M2-M1 loops).

The lowest frequency normal modes of both the initial

structure and an MD-acquired 10-ns structure were in-

vestigated. We note that for the MD structure, those obtained

from several other timeframes within the last 5 ns of the

trajectory showed similar results (not shown). As usual, the

first six modes correspond to eigenvectors with zero

eigenvalues (i.e., translations and rotations) and are dis-

carded; the lowest frequency normal mode is mode 7. For

the 1OED structure, mode 7 (Fig. 9 A) describes mainly

translational fluctuations of the M2-M3 loops, together with

the upper part of the M2 helices, with respect to the pore

center. This is asymmetric in terms of the pentameric bundle,

with the aM2’s motions directly opposite of those of the

g- and d-subunits. The bM2 moves along a line roughly

tangential with respect to the pore. Qualitatively similar

motions are identified for the 10-ns MD structure (not

shown), however, here chain a(A) moves in an opposite

direction to those of b(B) and g(E), whereas d(C) and a(D)

show translation tangential to the pore. The nature of the

translational motions results in a bending motion for all of

the M2 helices, with the hinge point located approximately at

the helix center (i.e., near aV255; Fig. 9, B and C). This
highlights the possibility that the intrinsic flexibility of the

M2s can also arise from the nature of the protein topology;

there is lower flexibility at the bottom half of the M2s due to

greater connectivities with neighboring subunits, whereas

the opposite is true for the upper half. Coupled with the

freedom of the M2-M3 loops, the extracellular half may

therefore undergo greater motions, resulting in helix bending

even without hinge-bending motifs (e.g., involving Gly or

Pro) near the kink point. Similar motions are described by

mode 8 for 1OED, and modes 8, 9, and 10 for the 10 ns MD

snapshot. Other normal modes also exhibit motions which

resemble those identified by PCA. Mode 9 for the cryo-EM

structure suggests symmetric and unidirectional rotation of

the M2 helices, whereas asymmetric rotations (involving

only three out of five M2 helices) were observed for the MD

structure in modes 11 and 12. However, these rotations do

not result in significant pore widening. We note that higher

frequency modes for both structures reveal relatively

localized fluctuations, such as those restricted to single

M2-M3 loops and helix ends, and are not considered here

Although the agreement between the timescale-indepen-

dent ANM/NMA and the timescale-dependent MD/PCA is

not exact, the characteristics of the collective motions

identified using the two approaches show some consistency

and are indicative of the robustness of different methodolog-

ical approaches to the results. This has several possible

interpretations. At the single-helix level, the similarity of the

motions (i.e., translational, rotational, and bendingmotions of

the M2 helices correlated with motions of the M2-M3 loops)

identified with the different methods simply illustrates that

there are only a limited number of collective motions possible

for the helices, given their structural arrangement, and that the

directions of these motions are relatively insensitive to

timescale beyond several nanoseconds. At the five-helix

bundle level, PCA analysis of the MD trajectory extracted (in

the first eigenvector) partial concerted rotations of the M2

helices, similar in nature to those extracted from NMA (in

mode 9 for 1OED and modes 11 and 12 for the MD) of the

ANM results, showing that the MD trajectory has partially

described some of the major collective motions identified by

ANM. This suggests that the energy landscape within the

conformational space sampled during theMD run (i.e., for the

FIGURE 9 Porcupine plots of the lowest frequency normal modes

acquired from ANM analysis for the 1OED (A and B) and an MD struc-

ture from a snapshot at 10 ns (C). (A) Mode 7 for 1OED, seen from the

extracellular end of the bundle. (B) Mode 7 for chain a(A) of 1OED viewed

perpendicular to the pore axis. (C) Mode 7 for chain a(A) of the MD

simulation snapshot. In B and C, the hinge point in the M2 helix is indi-

cated by an arrow. (Note that in all of these diagrams, only helices M1–M3

are shown, as the M4 helices were omitted from the ANM analysis; see

Methods).

3330 Hung et al.

Biophysical Journal 88(5) 3321–3333



closed state only) is approximately harmonic. However,

further exploration (e.g., by lengthier simulations) of the

conformational space of the nAChR is required to determine

the validity of this approximation for regions of the energy

surface further from those visited in the current trajectory. It is

of some interest to consider the timescale that such, inevitably

coarse-grained, simulations will have to address. Recent

kinetic studies suggest a timescale of ;1 ms for the channel

opening conformational transition (Chakrapani and Auer-

bach, 2005). Given recent progress in achieving such times

for atomistic simulations of peptide folding (Duan and

Kollman, 1998; Simmerling et al., 2002), it is reasonable to

assume appropriately coarse-grained channel simulations

should be able to achieve such a timescale in the near future.

CONCLUSIONS

In this study we have used MD simulation to explore

possible changes in conformation of the M2 helix bundle of

the nAChR, starting from the 1OED structure built on the

basis of 4 Å resolution EM images of the TM domain. These

conformational changes are presumed to reflect two factors:

‘‘relaxation’’ of a model based upon medium resolution data,

and intrinsic flexibility of the inner M2 helix bundle within

the (restrained) outer bundle formed by the M1, M3, and M4

helices. Analysis of the simulation data reveals two key

aspects of the behavior of the M2 helices: a M2 helix kinking

motion and asymmetry in the conformational dynamics of

the M2 helix bundle. The kinking of the M2 helices leads to

a narrowing of the pore in the vicinity of the proposed

hydrophobic gate (residues L99 and V139 of M2). The

asymmetry of the M2 helix motions is suggestive of a

sequential rather than a concerted model of channel gating

although a concerted model with asymmetric motions cannot

be excluded.

How are these simulation results related to experimental

studies of nAChR and related members of the Cys-loop

receptor channel family? The kinking of the helices to

constrict the pore in the vicinity of the L99 and V139

hydrophobic rings is consistent with a body of data that

places the gate in this vicinity (summarized in e.g., Bertrand

et al., 1993; Corringer et al., 2000; Lester, 1992; Lester et al.,

2004; Panicker et al., 2002). The majority of the nAChR data

have been interpreted in terms of a gate at L99 although it

may be difficult to be precise to within one turn of the M2

helix in positioning a gate by mutagenesis and labeling

studies. The asymmetry of the M2 helix conformational

dynamics would seem to be broadly consistent with the

‘‘conformational wave’’ model of nAChR gating (Cymes

et al., 2002; Grosman et al., 2000; Mitra et al., 2004)

although as discussed above, caution must be exercised in

interpreting the implications of the dynamics exhibited in the

current simulations due to the discordant timescales of MD

simulations and channel gating in reality. We have therefore

correlated the results of our (short timescale) atomistic sim-

ulations with the outcome of more coarse-grained simu-

lations using a Gaussian network model.

It is useful to place these results in the context of related

theoretical and simulation studies of nAChR. There have

been a number of modeling (Kim et al., 2004; Sankarar-

amakrishnan and Sansom, 1995) and simulation studies of

pores formed by just the M2 helix bundle (Law et al., 2003;

Saiz and Klein, 2002; Saiz et al., 2004), inspired by structural

and functional data on channels formed by an M2 helix

peptide (Montal et al., 1993; Montal, 1995; Oiki et al., 1988;

Opella et al., 1999). However, the EM structure, despite the

limitations of resolution, indicates that the packing of the M2

helices is modified by the presence of the outer (M1, M3,

M4) helix bundle. The structure of the intact TM domain

supports the model of a hydrophobic gate in the center of the

M2 helix bundle. The feasibility of such a hydrophobic

gating model is supported by MD simulations of water

(Beckstein et al., 2001; Beckstein and Sansom, 2003) and of

ions (Beckstein and Sansom, 2004) in simplified models of

ion channels and by simulations of the putative hydrophobic

gate of the MscS mechanosenstive channel (Anishkin and

Sukharev, 2004). Recent continuum electrostatics calcula-

tions (Corry, 2004) also support such a gating model for the

nAChR although the results of such calculations should be

treated with some caution in light of comparisons of

continuum electrostatics and atomistic PMF calculations of

barriers to ion permeation in simple model pores (Beckstein

et al., 2004). Thus, the results of the current simulations are

consistent with and extend the emergent theoretical model of

hydrophobic gating in the nAChR.

The indications of asymmetric conformational dynamics

in the M2 helix bundle are significant, especially as com-

parable asymmetries have been observed in MD simulations

of the extracellular ligand-binding domain of the homo-

pentameric a7 nAChR (Henchman et al., 2003). Further-

more, recent kinetic analysis of mutants in the M4 helices of

the nAChR (Mitra et al., 2004) have been interpreted in

terms of movement of the a-subunits before the e- and

b-subunits (in mouse nAChR the e-subunit replaces the

g-subunit of the nAChR). Of course, the timescale of the

current MD simulations (10 ns) falls several orders of

magnitude short of the timescale of channel activation in

response to acetylcholine binding (;1 ms). However, it may

be that the short timescale intrinsic flexibility of the M2

helices reveals at least some aspects of the dynamics of the

gate which are modulated within the intact receptor-channel

protein by coupling to the wave of conformational change

propagated down the protein (Cymes et al., 2002; Grosman

et al., 2000) after binding of the agonist to the receptor (i.e.,

gatekeeper) domain. It is of interest that M2 bending is seen

in the coarse-grained calculations, suggesting that in part this

may reflect the environment which the remainder of the TM

domain presents to these helices.

It is important to consider two limitations of this

simulation study. One is the absence of the ligand-binding
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domain and intracellular vestibule from the model, necessi-

tating the use of restraints to maintain the integrity of the

outer (M1, M3, M4) helix bundle. The other is the use of an

octane slab to approximate the membrane environment,

rather than a lipid bilayer. In particular, the lipid bilayer

headgroups will influence water ordering at the membrane-

water interface.

To address this, we have recently completed unrestrained

MD simulations of the TM domain in a lipid bilayer (A.

Hung and M. S. P. Sansom, unpublished), which yield

several results that are in qualitative agreement with those

discussed in this study. In particular, these latter studies

indicate that the minimum pore radius is significantly re-

duced compared to that of the initial EM structure and that

several M2 helices exhibit a significantly kinked conforma-

tion, with the hinge point residues coinciding with those

described in this study. We are therefore reasonably con-

fident that the behavior of M2 described above is unlikely to

be a simulation artifact due to the use of position restraints.

However, more detailed analysis and comparison of these

and of other recent simulations (Xu et al., 2005) will be

needed to be clear as to the possible influence of protein-lipid

interactions.
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