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Lipid distribution and transport across cellular membranes

Thomas Pomorski a, Sigrún Hrafnsdóttir a, Philippe F. Devaux b and Gerrit van
Meer a,∗

In eukaryotic cells, the membranes of different intracellular
organelles have different lipid composition, and various
biomembranes show an asymmetric distribution of lipid types
across the membrane bilayer. Membrane lipid organization
reflects a dynamic equilibrium of lipids moving across the
bilayer in both directions. In this review, we summarize
data supporting the role of specific membrane proteins in
catalyzing transbilayer lipid movement, thereby controlling
and regulating the distribution of lipids over the leaflets of
biomembranes.
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Introduction

The basic structure of biological membranes is
the lipid bilayer. This structure is mainly formed
from three different classes of lipids (glycerolipids,
sterols and sphingolipids). In eukaryotic cells, the
membranes of different intracellular organelles have
different lipid compositions. For example, plasma
membranes are typically enriched in sphingolipids,
phosphatidylserine (PS) and cholesterol, while the
endoplasmic reticulum (ER) is depleted in these
lipids. In addition to the heterogeneous distribution
of lipids between membranes, there are also striking
differences in the distribution of lipids across the
membrane bilayer. For instance, while the ER is
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assumed to have a symmetric lipid distribution, lipids
in the plasma membrane of eukaryotic cells show
a clear asymmetric arrangement, with the majority
of the glycosphingolipids and phosphatidylcholine
(PC) in the exoplasmic leaflet and the aminophos-
pholipids, PS and phosphatidylethanolamine (PE),
on the cytoplasmic face (reviewed in Reference 1).

The lipid distribution across membranes results
from a continuous inward and outward movement
of lipids between the two monolayers (Figure 1).
Although neutral lipids like cholesterol and charged
lipids in a protonated form, such as free fatty acid,
phosphatidic acid or phosphatidylglycerol, can
move fast between leaflets, spontaneous transbilayer
movement of most lipids with a polar (or charged)
lipid headgroup is a very slow process (t1/2=hours
to days in model membranes; see Reference 1).
However, the assembly of certain cellular membranes
relies on a rapid transbilayer movement of polar
lipids. Examples are the ER of eukaryotes or in the
cytoplasmic membrane of prokaryotes, where lipid
biosynthesis occurs predominately in the cytoplasmic
leaflet. Furthermore, the compositional asymmetry
of the plasma membrane does not correspond to the
asymmetry of lipid synthesis or hydrolysis. Hence,
lipid asymmetry must be formed and afterwards
maintained by specific mechanisms that control lipid
movement across the bilayer and counterbalance
the lipid randomization caused by spontaneous
transbilayer movement.

Techniques to assess transbilayer lipid
movement

The asymmetric arrangement of phospholipids in
plasma membranes was originally established for nat-
ural lipids in erythrocytes using chemical labeling,2

hydrolysis by phospholipases,3 and exchange by lipid
transfer proteins,4,5 and by the same techniques
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Figure 1. Lipids can cross biological membranes by vari-
ous mechanisms. Spontaneous diffusion refers to the non-
specific lipid movement occurring between the membrane
leaflets; its rate is determined by the biophysical proper-
ties of both the lipid and the membrane (note that trans-
fer of a lipid from one monolayer to the other is not nec-
essarily coupled with movement of a lipid towards the op-
posite direction). Flippases facilitate an ATP-independent,
bi-directional movement of lipids but are unable to accumu-
late a given lipid in one leaflet. Translocases directly use the
energy released by ATP-hydrolysis to drive unidirectional
lipid movement against a gradient in the membrane.

in plasma membrane-derived viruses.6–8 Whereas
initially lipid translocation across biomembranes
was also measured by these techniques, evidence for
the involvement of proteins is based on techniques
using lipid analogs, where in general one fatty acid
chain has been replaced by a short chain carrying
a radiolabel, a spin-label or a fluorescent moiety9

(Figure 2). Clearly, in any case where a protein has
been identified as being involved in translocating
lipid analogs across a biomembrane, the activity
of the protein towards naturally occurring lipids
will have to be established. Also the kinetics of
transbilayer movement of natural lipids can only be
determined by studying the lipids themselves, but
due to technical complications this has been achieved
in only a few cases. It is, therefore, a challenge to
the field to develop methods to establish whether
the putative lipid translocators use natural lipids as
substrates, and by which the transbilayer movement
of natural lipids can be measured in living systems.
The use of fluorescent annexin V is a new method
that has proved extremely sensitive for the detection

of small amounts of endogeneous PS on the surface
of apoptotic and aged cells.10

Lipid movement in the ER and bacterial
membranes: evidence for flippases

The ER is the principal site of membrane assembly
in eukaryotes and in that aspect similar to the cy-
toplasmic membrane in prokaryotes. Phospholipid
biosynthesis in these membranes is an asymmetric
process, resulting in the insertion of a newly syn-
thesized lipid in the cytoplasmic leaflet. In order to
create a bilayer, a fraction of the phospholipids has
to be translocated to the other leaflet (Figure 3).
Indeed, rapid phospholipid movement has been
reported in microsomal membranes (t1/2= seconds
to minutes).11–17 Although the measured rate of
transport varied between assays, probably due to
differences in kinetic resolution, all observations to
date indicate that phospholipid movement in the ER
is bi-directional, ATP-independent and non-specific
towards the phospholipid headgroup. Protein-
modifying reagents partially inhibited phospholipid
movement suggesting that proteins are directly or
indirectly involved.13,15–17 This notion was further
substantiated when membrane proteins from rat liver
microsomes were reconstituted into proteoliposomes
and found to facilitate lipid translocation, while
protein-free liposomes or proteoliposomes contain-
ing proteins from human erythrocyte membrane
were inactive.14 Recently, the transbilayer movement
of short-chain (diC4) water-soluble PC was assayed
in proteoliposomes reconstituted from Triton X-100
soluble fractions of rat liver microsomes.17 The
transport activity was recovered in liposomes contain-
ing a protein fraction of a low sedimentation rate
and was sensitive to proteolysis, whereas similarly
prepared liposomes, containing solely the ER lipids,
were inactive. Fractionation of the detergent extract
resulted in proteoliposomes with different specific ac-
tivity, indicating that specific microsomal membrane
proteins were responsible for the transport.

Besides the phospholipids, the glycolipids
mannosyl-phosphodolichol, glucosyl-phosphodolichol
and an oligosaccharide-diphosphodolichol have to
undergo transbilayer movement in the ER for the
synthesis of the full length lipid-linked oligosaccha-
ride that is subsequently transferred to a lumenal
domain of proteins. Rapid flip–flop of water-soluble
analogs of these glycolipids has been reported.18
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Figure 2. Schematic representation of the techniques used for monitoring transbilayer movement of lipid. Most techniques
are based on the use of lipid analogs with either one or two short fatty acid chains. Dibutyroylphosphatidylcholine (diC4PC)
is rather water-soluble and will be released into the lumen when it redistributes from the outer to the inner leaflet of
the vesicle. Thus, rapid separation of the vesicles from the incubation medium by filtration allows determination of lipid
translocation by measuring the amount of radioactivity associated with the vesicles. Acyl-chain-labeled lipid analogs contain
a radiolabel, a spin-label or fluorescent group on a short fatty acyl chain at the C2 position of the glycerolipid or on
the amine of the sphingosine. These lipids can be incorporated into synthetic donor vesicles. Upon addition to cells, the
lipid analogs (but not the normal long-chain lipids) transfer spontaneously and very rapidly into the outer leaflet of the
biological membrane. Their transbilayer distribution can be monitored as a function of time by either back extraction of the
probes still present in the exposed leaflet onto albumin, or by chemical modification of the non-translocated analogs with
membrane impermeant reagents such as ascorbate (for spin-label) or dithionite (for the fluorescent NBD group). When
using fluorescent analogs, vesicles can be prepared containing the non-exchangeable, headgroup labeled N-rhodamine
PE and the NBD lipid of interest. During exchange and translocation of the NBD-lipid, a decrease of the energy transfer
between the NBD lipid and the N-Rh-PE occurs which results in an increase in the NBD fluorescence and allows continuous
measurement of lipid translocation. Modification of lipids present in the outer leaflet by chemical reagents or action of
phospholipases can be applied to endogenous, long-chain lipids but has a limited temporal resolution.

Similarly, the synthesis of the glycosylphosphatidyli-
nositol anchor of GPI-proteins is initiated on the
cytosolic surface of the ER and, at some stage of its
biosynthesis, must translocate to the ER lumen for
addition to proteins.

As in the ER, fast transbilayer movement of phos-
pholipids is needed to propagate the bilayer of the
bacterial cytoplasmic membrane, at a rate sufficient
for a rapidly growing bacterium. Phospholipid
flip–flop in bacterial cytoplasmic membranes has
accordingly been found to be fast.19–23 Interestingly,

phospholipid flip–flop in bacteria has similar char-
acteristics as in the ER and is bi-directional, energy
independent and non-specific towards the phospho-
lipid headgroup. In support for the involvement
of membrane proteins in the accelerated flip–flop,
phospholipid movement in Baccillus membrane vesi-
cles was found to be protease-sensitive.22 However,
protein modification of E. coli inner membrane
proteins had no detectable effect on phospholipid
transport,21,23 probably because the assay used would
not have allowed detection of partial inhibition.
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Figure 3. Various proteins control lipid sidedness across cellular membranes. Synthesis of phosphatidylcholine (PC),
phosphatidylserine (PS) and phosphatidylethanolamine (PE) occurs on the cytoplasmic leaflet of the endoplasmic
reticulum (ER). PC and PE are synthesized by addition of the appropriate phosphoryl base to diacylglycerol (DAG), while PS
is derived by base exchange of serine for the ethanolamine moiety of PE. Ceramide can be converted to galactosylceramide
(GalCer) on the lumenal side of the ER. A non-specific flippase allows the rapid redistribution of the newly synthesized
phospholipids11–17 and GalCer.74 Glucosylceramide (GlcCer), the precursor of higher glycosphingolipids, is synthesized
at the cytosolic face of Golgi membranes. It can be translocated across the Golgi membrane and used in the biosynthesis
of lactosylceramide (LacCer) and other glycosphingolipids, but it is unclear whether translocation is bi-directional. The
complex glycolipids and sphingomyelin (SM), which are produced at the lumenal face, do not translocate towards the
cytosolic face.73,74 A candidate aminophospholipid translocase has been localized in the late Golgi.35,39 In the plasma
membrane, an ATP-dependent aminophospholipid translocase transports PS and PE towards the cytoplasmic leaflet and
maintains a permanent lipid asymmetry.9,25,27 Members of the ABC transporter family can translocate specific lipids from
the cytoplasmic to the exoplasmic leaflet of the plasma membrane, e.g. MDR3 P-pg mediates PC translocation across the
canalicular domain of the hepatocyte membrane.43,45–47 Scramblase action, which depends on activation, results in rapid
transbilayer movement of all phospholipids and loss of lipid asymmetry in the plasma membrane.65–67

Reconstitution of flippase activity from bacteria has
been reported.24 The transport of a short-chain
phospholipid analog and a long-chain phospholipid
was associated with the detergent extract of the
membrane but not the lipid extract. Transport was
protease-sensitive and was enriched in a fraction
sedimenting at ∼4S on a glycerol gradient. Recovery
of activity in other gradient fractions was low despite
the presence of a complex mixture of membrane
proteins. These data suggest that bacteria contain
specific proteins capable of facilitating phospholipid
flip–flop. Whether the bacterial and the ER flippases
turn out to be related proteins remains to be seen.

Lipid movement across the plasma membrane
of eukaryotic cells

Maintenance and regulation of the asymmetric lipid
distribution across the plasma membrane is governed
by the concerted action of specific membrane pro-
teins controlling lipid movement across the bilayer.
The inward movement of PC and sphingomyelin
(SM) from the exoplasmic to the inner plasma
membrane is, under normal conditions for most
cells, a slow, non-mediated process. The presence
of cholesterol in the plasma membrane contributes
largely to the stability of SM transbilayer distribution.
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In contrast, the aminophospholipids, PS and PE,
are rapidly transported from the outer to the inner
leaflet by an active ATP dependent and protein-
mediated process, thus maintaining lipid asymmetry.
The involvement of proteins and ATP dependence
has also been reported for the outward movement
of lipids. The asymmetrical lipid distribution of the
plasma membrane can be scrambled rapidly. This
ATP-independent process triggered by cytosolic cal-
cium, would involve the action of a scramblase. The
maintenance of the nonrandom lipid distribution
is important for cellular functions. Any change in
this distribution generally triggers a physiological
event. Exposure of PS at the surface of activated or
injured blood cells or endothelium serves to promote
blood coagulation (reviewed in Reference 25).
Surface exposure of plasma membrane PS and PE
signals the removal of injured apoptotic cells by the
reticuloendothelia system.26 Besides these functions
of an asymmetric lipid distribution in specific cells,
the transfer of lipids from one leaflet to the other in
cellular membranes may be of general significance
for the functioning of a single cell. For example, it
could be involved in the regulation of membrane cur-
vature, e.g. during endocytosis, or in the modulation
of the activity of membrane proteins.27,28

Active inward translocation: the aminophospholipid
translocase

The inward movement of aminophospholipids
has been shown to depend upon an ATP-driven
aminophospholipid translocase which transports
PS and PE selectively from the exoplasmic to the
cytosolic leaflet of mammalian plasma membranes
(t1/2=minutes for PS). First described in human
erythrocyte membrane,9 this aminophospholipid
translocating activity has now been demonstrated
in various plasma membranes and in chromaffin
granules (reviewed in References 1,25,27). A fast
ATP-dependent inward movement of aminophos-
pholipids analogs was also found for the yeast plasma
membrane.29,30 Here, aminophospholipid translo-
cation was accompanied by rapid internalization of
PC analogs suggesting the presence of either an
additional PC-specific translocase or a new type of
translocase, translocating aminophospholipids as
well as PC towards the cytoplasmic leaflet. Such a
rapid inward movement of PC was also found for
the basolateral plasma membrane of hepatocytes31

and in both the basolateral and apical membrane of
kidney epithelial cells.32

The aminophospholipid translocase has not yet
been unequivocally identified. Tentative purifications
from erythrocytes33,34 suggested a Mg2+ ATPase with
a molecular mass of 115–120 kDa. However purifica-
tion and cloning of the gene encoding the ATPase II
from bovine chromaffin granules, another candidate
protein, revealed a slightly bigger protein belonging
to a novel subfamily of P-type ATPases.35 Disruption
of the homologous gene in yeast, the DRS2 gene,
abolished the internalization of a fluorescent PS
analog (C6-NBD-PS) at low temperature.35 This ob-
servation was interpreted as evidence that the DRS2p
and the ATPase from bovine chromaffin granules
are aminophospholipid translocases. Interestingly,
Axelsen and Palmgren36 have claimed to have found
an analog of the chromaffin ATPase II in plant cells
that is responsible for PS translocation. In later
studies, but under somewhat different experimental
conditions, deletion of the DRS2 gene did neither
specifically abolish the translocation of fluorescent PS
and PE analogs, nor affect the preferential orienta-
tion of endogenous aminophospholipids towards the
cytoplasmic leaflet of yeasts.37,38 These observations
and the recent localization of the DRS2p in the Golgi
complex39 argue against the idea that this protein
acts as an exclusive or major aminophospholipid
translocase in the plasma membrane of yeast.

Active outward translocation: involvement of ABC
transporters

Evidence for an ATP-dependent and protein-
mediated outward movement of lipids towards the
cell surface were found first for erythrocyte mem-
brane.40,41 This transport activity has been observed
for analogs of the aminophospholipids as well as of
PC with rather slow rate (t1/2≈1.5 hours). However,
a role in the transport of endogenous lipids has not
been well established.

A different outward-directed translocase activity
located in the plasma membrane was identified in
studies originally related to multidrug resistance
(MDR) in cancer cells. One form of MDR results
from overexpression of the MDR1 P-glycoprotein (P-
gp). This membrane protein belongs to ATP-binding
cassette (ABC) transporter family and extrudes a
wide variety of amphipathic drugs from cells. The
closely related ABC transporter MDR3 P-gp is highly
expressed in the bile canalicular membrane of hepa-
tocytes. Mice with a disruption of the mdr2 gene (the
mouse homolog of MDR3), were found unable to
transport PC into bile.42 Studies on secretory vesicles
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from yeast transfected with mdr2 P-gp showed that
this protein transports the PC analog C6-NBD-PC
from the cytoplasmic to the exoplasmic leaflet of
the membrane bilayer43 (however, cf. Angeletti and
Nichols44 for a methodological note). Nies et al.
45 confirmed this ATP-dependent PC translocation
in isolated canalicular plasma membrane vesicles.
Specificity for PC was demonstrated on polarized
epithelial cells transfected with human MDR3 P-gp.
Newly synthesized C6-NBD-PC could reach the
apical plasma membrane in the absence of vesicular
transport, while NBD analogs of PE, SM and glucosyl-
ceramide (GlcCer) were not translocated.46 Evidence
for translocation of endogenous PC was provided in
fibroblasts from mdr2 knock out mice expressing
MDR3 Pgp.47 Besides MDR3 Pgp, evidence has been
presented for an ATP-independent PC flippase in
canalicular plasma membrane.48

Unexpectedly, the drug transporter MDR1 P-gp was
found to be responsible for transporting a variety of
short-chain lipid analogs from the inner to the outer
leaflet of the plasma membrane.46,49,50 Amongst
these were short-chain analogs of PC and of GlcCer,
two lipids synthesized on the cytosolic surface of ER
and Golgi. MDR1 P-gp was found unable to rescue PC
transport into the bile in the mdr2 knockout mice,42

suggesting that natural long-chain PC is not a natural
substrate. However, evidence has been obtained that
secretion of the short-chain PC platelet activating
factor (PAF) is greatly enhanced in cells transfected
with MDR1 P-gp and is sensitive to inhibitors and
substrates of MDR1 P-gp (Reference 51; R. Raggers,
I. Vogels and G. van Meer, submitted). In addition,
expression of MDR1 P-gp has been correlated with
an increase in cellular GlcCer and higher glycol-
ipids.52,53 Using an enzymatic assay for GlcCer
appearance on the cell surface, it has now been
found that MDR1 P-gp rescues GlcCer from hydroly-
sis by a non-lysosomal enzyme through removal from
the cytosolic leaflet of the plasma membrane and
translocation towards the outer leaflet (R. Raggers
et al., manuscript in preparation). All cells express
MDR1 P-gp, but expression is particularly high in
the apical plasma membrane domain of epithelial
cells. The observation that an MDR1 P-gp knockout
mouse does not display lipid-related physiological
defects suggests that its activity as a lipid translocator
is physiologically irrelevant or that an alternative
system(s) can compensate for the defect.54

The multidrug resistance protein MRP1, another
drug-pumping ABC-transporter, was also found to
translocate C6-NBD-analogs. In contrast to MDR1

P-gp, it did not translocate sphingolipids without
the NBD moiety nor C6-NBD-PC.55 In studies with
MRP1 knockout mice, an MRP1-mediated transport
of C6-NBD-PS (and C6-NBD-PC) was reported in
erythrocytes. However, no changes in the distribution
of endogenous PS were detected.56,57 Therefore, it
is still unclear whether MRP1 is involved in the
translocation of natural lipids.

Finally, mutations of the ABC transporter ABC1
gene have been shown to be the cause of familial
high-density lipoprotein (HDL) deficiency and Tang-
ier disease, an autosomal recessive disorder of lipid
metabolism, resulting in very low plasma HDL levels
and increased amounts of cholesterol-ester storage
in cells.58–60 Tangier fibroblasts manifest a decrease
in the HDL- or apolipoprotein A1-induced efflux of
both cholesterol and phospholipids (radiolabeled PC
and SM)61,62 suggesting a possible role as cholesterol
efflux transporter. ABC1 was reported to be involved
in the engulfment of apoptotic cells by increasing the
transbilayer movement of PS.63 Recent studies with
ABC1 knockout mice revealed that calcium triggered
spin-labeled PS redistrubution is indeed accelerated
by ABC1.64

Bi-directional movement: the scramblase

Calcium-influx accompanying cellular activation
causes a loss of phospholipid asymmetry in the
plasma membrane. The scrambling process is bi-
directional and involves all major phospholipid
classes, moving at comparable rates (t1/2≈10 to
20 minutes), with slower mobility for SM.65–67 One
report has suggested that, at least in platelets, PS and
PE are preferentially externalized.68 Inhibition of
the aminophospholipid translocase alone does not
directly lead to the exposure of PS. Since phospho-
lipid scrambling is inhibited by protein-modifying
reagents67 and is ATP-independent, the activation
of a specific calcium-dependent flippase, called
scramblase, has been suggested. A rare and very
severe bleeding disorder called Scott syndrome was
thought to correspond to the lack of the scramblase;
at least it is associated with an impairment of cal-
cium triggered lipid redistribution in platelets.69 A
37 kDa membrane protein from erythrocytes was
capable of mediating calcium-dependent transbi-
layer movement of phospholipids in reconstituted
liposomes.70,71 However, the apparent rate of phos-
pholipid scrambling was rather low (t1/2≈2 hours)
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and this protein is present in blood cells of the Scott
patients.72 Hence, the identity of the scramblase is
still obscure.

Lipid movement across other intracellular
membranes

In the Golgi, GlcCer, the precursor for the higher
glycosphingolipids, is synthesized on the cytoplasmic
leaflet. All higher glycosphingolipids are synthesized
on the lumenal leaflet, resulting in the presence
of numerous different glycosphingolipids on the
cell surface. Therefore, GlcCer has to translocate
across the Golgi membrane for synthesis of higher
glycolipids. This has been demonstrated with a short-
chain analog (C6-NBD-GlcCer) on isolated Golgi
membranes,73,74 suggesting that a GlcCer flippase
is present in the Golgi membrane. The flippase
did not require exogenous energy, allowed passage
of galactosylceramide as well as GlcCer and did
not allow the metabolic products lactosylceramide,
(galactosyl)2ceramide or sulfatide to translocate back
to the cytosolic surface. The localization of a putative
aminophospholipid translocator in the late Golgi,39

raises the possibility that lipid asymmetry might be
established in the Golgi complex.

Evidence for a novel ATP-dependent phospholipid
translocase has been recently reported for gastric
vesicles which translocates PS, PE and PC from
the cytosolic to the lumenal leaflet.75 Transport
was dependent on ATP on the cytosolic side and
abolished by an inhibitor of the gastric H+, K+-
ATPase but not by an inhibitor or substrates of the
multidrug resistance proteins. A similar translocase
activity was reported for synaptic vesicles but assumed
to depend on lumenal ATP.76

Summarizing remarks

Although the last decades have brought us first
insights into the transversal orientation of mem-
brane lipids and the mechanisms responsible for
generating and maintaining this organization, many
questions remain. With respect to the transbilayer
distribution of the lipids, little is known concerning
the orientation of cholesterol, one of the major
lipids in the plasma membrane, and other more
minor lipids like phosphatidylinositol and its phos-
phorylated derivatives. An additional complexity is

the fact that the lateral distribution of the various
lipids in the plane of the membrane is probably not
homogeneous. Apart from difficulties in defining
the relevant parameters of lipid asymmetry, this
predicts that not all molecules of a certain lipid class
present in one membrane leaflet will translocate
with the same kinetics. The flippases or translocases
may be preferentially localized in a specific lipid
environment.

A number of proteins have now been identified
as being involved in the translocation of lipids.
In essentially all cases it remains to be established
whether these proteins can translocate a certain lipid
across a lipid bilayer on their own, or whether they are
part of an oligomeric complex. To resolve this issue,
reconstitution of purified proteins into liposomes
would seem the only suitable method. Only then
will we be ready to start addressing the problem of
how the activities of the various lipid transporters are
regulated and coordinated to satisfy the physiological
demands of a dynamic cell.
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