
GromacsWrapper Documentation
Release 0.1.12

Oliver Beckstein

June 11, 2010

CONTENTS

1 Contents 3
1.1 README . 3
1.2 INSTALL . 4
1.3 Gromacs package . 7
1.4 Analysis . 158
1.5 Auxiliary modules . 178
1.6 Alternatives to GromacsWrapper . 192

2 Indices and tables 195

Bibliography 197

Module Index 199

Index 201

i

ii

GromacsWrapper Documentation, Release 0.1.12

GromacsWrapper is a python package that wraps system calls to Gromacs tools into thin classes. This allows for
fairly seamless integration of the gromacs tools into python scripts. This is generally superior to shell scripts because
of python’s better error handling and superior data structures. It also allows for modularization and code re-use. In
addition, commands, warnings and errors are logged to a file so that there exists a complete history of what has been
done.

See INSTALL for download and installation instructions. Documentation is primarily provided through the python doc
strings (from which most of the online documentation is generated).

There is also auto-generated online source code documentation available and the source code itself is available in the
GromacsWrapper git repository.

Warning: Please be aware that this is alpha software that most definitely contains bugs. The API is not stable
and can change between releases.
It is your responsibility to ensure that you are running simulations with sensible parameters.

The package and the documentation are still in flux and any feedback, bug reports, suggestions and contributions are
very welcome. See the package README for contact details.

For other approaches to interfacing python and Gromacs see Alternatives to GromacsWrapper.

CONTENTS 1

http://www.gromacs.org
http://www.python.org
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/html/index.html
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/epydoc/index.html
http://github.com/orbeckst/GromacsWrapper
http://github.com/orbeckst/GromacsWrapper/issues
http://www.python.org
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.1.12

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 README

See INSTALL for installation instructions. Documentation is mostly provided through the python doc strings. See
Download and Availability for download instructions if the instructions in INSTALL are not sufficient.

There is also auto-generated online source code documentation available. The source code is also available in the
GromacsWrapper git repository.

Please be aware that this is alpha software that most definitely contains bugs. It is your responsibility to ensure that
you are running simulations with sensible parameters.

1.1.1 License

The GromacsWrapper package is made available under the terms of the GNU Public License v3 (or any higher
version at your choice).

See the file COPYING for the licensing terms for all modules except the vmd module, which is made available under
the LGPL v3 (see COPYING and COPYING.LESSER).

1.1.2 Included Software

The distribution contains third party software that is copyrighted by the authors but distributed under licences com-
patible with this package license. Where permitted and necessary, software/files were modified to integrate with
GromacsWrapper.

In case of problems please direct error reports to Oliver Beckstein in the first instance as these bugs might not have
been present in the original software or files.

Included third party content:

GridMat-MD

• Grid-based Membrane Analysis Tool for use with Molecular Dynamics [Allen2009]

• version: 1.0.2

• license: GPL 3.0

• W. J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Analysis
Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

• http://bevanlab.biochem.vt.edu/GridMAT-MD/

3

http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/html/index.html
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/epydoc/index.html
http://github.com/orbeckst/GromacsWrapper
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
mailto:oliver.beckstein@bioch.ox.ac.uk
http://bevanlab.biochem.vt.edu/GridMAT-MD/

GromacsWrapper Documentation, Release 0.1.12

odict.py

• a simple implementation of an ordered dictionary as proposed in PEP 0372

• copyright: (c) 2008 by Armin Ronacher and PEP 273 authors.

• license: modified BSD license (compatible with GPL)

• http://dev.pocoo.org/hg/sandbox/raw-file/tip/odict.py

1.1.3 Citing

If you find this package useful and use it in published work I’d be grateful if it was acknowledged in text as

“... used GromacsWrapper (Oliver Beckstein, http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/)”

or in the Acknowledgements section.

If you use the gridmatmd plugin also cite [Allen2009].

Thank you.

References

1.1.4 Download and Availability

The GromacsWrapper home page is http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/ . The latest version
of the package is being made available via the internet-thingy at the direct download URI

http://sbcb.bioch.ox.ac.uk/oliver/download/Python/

You can use this URI if you want to install from the network using easy_install as described in INSTALL.

You can also clone the GromacsWrapper git repository or fork for your own development:

git clone git://github.com/orbeckst/GromacsWrapper.git

1.1.5 Contact

Please use the Issue Tracker to report bugs and feature requests; general feedback and inquiries can be sent to Oliver
Beckstein by e-mail.

1.2 INSTALL

This document should help you to install the GromacsWrapper package. The installation uses setuptools (also known
as easy_install or “egg install”); if this is not available on your system you can either let the installer download it
automatically from the internet (so just go to Quick installation instructions) or install it using your package manager,
eg:

aptitude install python-setuptools

or similar.

Please do not hesitate to contact Oliver Beckstein if problems occur or if you have suggestions on how to improve the
package or these instructions.

4 Chapter 1. Contents

http://www.python.org/dev/peps/pep-0372
http://www.fsf.org/licensing/licenses/index_html
http://dev.pocoo.org/hg/sandbox/raw-file/tip/odict.py
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/
http://sbcb.bioch.ox.ac.uk/oliver/download/Python/
http://github.com/orbeckst/GromacsWrapper
http://github.com/orbeckst/GromacsWrapper/issues
mailto:oliver.beckstein@bioch.ox.ac.uk
mailto:oliver.beckstein@bioch.ox.ac.uk
http://peak.telecommunity.com/DevCenter/setuptools
mailto:orbeckst@gmail.com

GromacsWrapper Documentation, Release 0.1.12

1.2.1 Quick installation instructions

If you have easy_install on your system you can directly install from the interweb:

easy_install -f http://sbcb.bioch.ox.ac.uk/oliver/download/Python GromacsWrapper

This will automatically download and install the latest version.

1.2.2 Manual Download

If your prefer to download manually, get the latest version from

http://sbcb.bioch.ox.ac.uk/oliver/download/Python

and use any of the following methods (in increasing order of complexity):

• From an egg install file, eg GromacsWrapper-0.1-py2.5.egg:

easy_install GromacsWrapper-0.1-py2.5.egg

• From a tar ball, eg GromacsWrapper-0.1.tar.gz:

easy_install GromacsWrapper-0.1.tar.gz

• From the unpacked source:

tar -zxvf GromacsWrapper-0.1.tar.gz
cd GromacsWrapper-0.1
python setup.py install

See the easy_install instructions for explanation of the options that allow you to install into non-standard places.

1.2.3 Source code access

The tar archive from http://sbcb.bioch.ox.ac.uk/oliver/download/Python contains a full source code distribution.

In order to follow code development you can also browse the code git repository at
http://github.com/orbeckst/GromacsWrapper or clone the git repository from

git://github.com/orbeckst/GromacsWrapper.git

1.2.4 Requirements

Python and Gromacs must be installed. ipython is very much recommended. These packages might already be
available through your local package manager such as aptitude/apt, yum, yast, fink or macports.

System requirements

Tested with python 2.5, 2.6 on Linux and Mac OS X. Earlier python versions will likely fail.

1.2. INSTALL 5

http://sbcb.bioch.ox.ac.uk/oliver/download/Python
http://peak.telecommunity.com/DevCenter/EasyInstall#custom-installation-locations
http://sbcb.bioch.ox.ac.uk/oliver/download/Python
http://github.com/orbeckst/GromacsWrapper
http://www.python.org
http://www.gromacs.org
http://ipython.scipy.org

GromacsWrapper Documentation, Release 0.1.12

Required python modules

The basic package makes use of numpy and can use matplotlib (in the form of the pylab package). Only numpy is
immediately required (and automatically installed with easy_install).

For the gromacs.analysis library additional packages are required:

package version source
matplotlib >=0.91.3 http://matplotlib.sourceforge.net/
RecSQL >=0.3 http://sbcb.bioch.ox.ac.uk/oliver/software/RecSQL/

See Installing all packages and requirements for hints on how to install these package.

1.2.5 Additional instructions

Installing all packages and requirements

If you want to make sure that easy_install also installs requirements for optional modules then you will have to
add the additional requirement [analysis] to the command line. For a web install this would look like

easy_install -f http://sbcb.bioch.ox.ac.uk/oliver/download/Python GromacsWrapper[analysis]

For installation from a downloaded source distribution

easy_install GromacsWrapper-0.1.tar.gz[analysis]

or from within the unpacked source

cd GromacsWrapper-0.1
easy_install . GromacsWrapper[analysis]

In each case this will try to download additional packages for the extra analysis module.

A common problem appears to be the error Could not find matplotlib as discussed below.

1.2.6 Troubleshooting

For problems with easy_install please read the User setuptools instructions.

Installing in non-standard locations

Inform yourself about how to use easy_install to install packages in Custom Installation Locations.

For code hacking and development a developer installation is often useful. In the unpacked source:

python setup.py develop --install-dir python-lib-dir

where python-lib-dir must be on the PYTHONPATH.

6 Chapter 1. Contents

http://numpy.scipy.org
http://matplotlib.sourceforge.net/
http://numpy.scipy.org
http://matplotlib.sourceforge.net/
http://sbcb.bioch.ox.ac.uk/oliver/software/RecSQL/
http://peak.telecommunity.com/DevCenter/setuptools#what-your-users-should-know
http://peak.telecommunity.com/DevCenter/EasyInstall#custom-installation-locations

GromacsWrapper Documentation, Release 0.1.12

easy_install import error

Online installation can run into issues where the installation dies with the error:

ImportError: No module named ez_setup

If EasyInstall Troubleshooting does not help then try downloading the source distribution package manually, unpack,
and install from inside with something like:

python setup.py install

If this is still not working contact the author and complain.

Could not find matplotlib

Automatic downloading of matplotlib often fails:

Searching for matplotlib>=0.91.3
Reading http://pypi.python.org/simple/matplotlib/
Reading http://matplotlib.sourceforge.net
Reading https://sourceforge.net/project/showfiles.php?group_id=80706&package_id=278194
Reading https://sourceforge.net/project/showfiles.php?group_id=80706&package_id=82474
Reading http://sourceforge.net/project/showfiles.php?group_id=80706
No local packages or download links found for matplotlib>=0.91.3
error: Could not find suitable distribution for Requirement.parse(’matplotlib>=0.91.3’)

If automatic downloading of matplotlib fails then the best approach is to install it through your package manage-
ment system. Search for “matplotlib” or “pylab” in the list of available packages.

If this is not an option then download matplotlib manually and install matplotlib manually first. For example,

wget http://kent.dl.sourceforge.net/sourceforge/matplotlib/matplotlib-0.98.5.3-py2.5-macosx-10.3-fat.egg \
-O matplotlib-0.98.5.3-py2.5.egg

easy_install matplotlib-0.98.5.3-py2.5.egg

Note that you should look at the download matplotlib page to get the latest distribution. As highlighted in the matplotlib
installation FAQ it is important to rename the egg file (as done in the example above).

Possibly the following installation from the source distribution works, too:

easy_install matplotlib-0.98.5.3.tar.gz

Once this has been accomplished, try the above installation instructions again; easy_install should now pick up
the newly installed matplotlib.

1.3 Gromacs package

The gromacs package makes Gromacs tools available via thin python wrappers. In addition, it provides little building
blocks to solve commonly encountered tasks.

Contents:

1.3. Gromacs package 7

http://peak.telecommunity.com/DevCenter/EasyInstall#troubleshooting
http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.sourceforge.net/users/installing.html
http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.sourceforge.net/faq/installing_faq.html#easy-install-from-egg
http://matplotlib.sourceforge.net/faq/installing_faq.html#easy-install-from-egg
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.1.12

1.3.1 gromacs – GromacsWrapper Package Overview

GromacsWrapper (package gromacs) is a thin shell around the Gromacs tools for light-weight integration into
python scripts or interactive use in ipython.

Modules

gromacs The top level module contains all gromacs tools; each tool can be run directly or queried for its documen-
tation. It also defines the root logger class (name gromacs by default).

gromacs.config Configuration options. Not really used much at the moment.

gromacs.cbook The Gromacs cook book contains typical applications of the tools. In many cases this not more
than just an often-used combination of parameters for a tool.

gromacs.tools Contains classes that wrap the gromacs tools. They are automatically generated from the list of
tools in gromacs.tools.gmx_tools.

gromacs.formats Classes to represent data files in various formats such as xmgrace graphs. The classes allow
reading and writing and for graphs, also plotting of the data.

gromacs.utilities Convenience functions and mixin-classes that are used as helpers in other modules.

gromacs.setup Functions to set up a MD simulation, containing tasks such as solvation and adding ions, energy
minimizqtion, MD with position-restraints, and equilibrium MD.

gromacs.qsub Functions to handle batch submission queuing systems.

gromacs.run Classes to run mdrun in various way, including on multiprocessor systems.

gromacs.analysis A package that collects whole analysis tasks. It uses the gromacs but is otherwise only loosely
coupled with the rest. At the moment it only contains the infrastructure and an example application. See the
package documentation.

Examples

The following examples should simply convey the flavour of using the package. See the individual modules for more
examples.

Getting help

In python:

help(gromacs.g_dist)
gromacs.g_dist.help()
gromacs.g_dist.help(long=True)

In ipython:

gromacs.g_dist ?

8 Chapter 1. Contents

http://www.gromacs.org
http://ipython.scipy.org

GromacsWrapper Documentation, Release 0.1.12

Simple usage

Gromacs flags are given as python keyword arguments:

gromacs.g_dist(v=True, s=’topol.tpr’, f=’md.xtc’, o=’dist.xvg’, dist=1.2)

Input to stdin of the command can be supplied:

gromacs.make_ndx(f=’topol.tpr’, o=’md.ndx’,
input=(’keep "SOL"’, ’"SOL" | r NA | r CL’, ’name 2 solvent’, ’q’))

Output of the command can be caught in a variable and analyzed:

rc, output, junk = gromacs.grompp(..., stdout=False) # collects command output
for line in output.split(’\n’):

line = line.strip()
if line.startswith(’System has non-zero total charge:’):

qtot = float(line[34:])
break

(See gromacs.cbook.grompp_qtot() for a more robust implementation of this application.)

Warnings and Exceptions

A number of package-specific exceptions (GromacsError) and warnings (Gromacs*Warning,
AutoCorrectionWarning, BadParameterWarning) can be raised.

If you want to stop execution at, for instance, a AutoCorrectionWarning or BadParameterWarning then
use the python warnings filter:

import warnings
warnings.simplefilter(’error’, gromacs.AutoCorrectionWarning)
warnings.simplefilter(’error’, gromacs.BadParameterWarning)

This will make python raise an exception instead of moving on. The default is to always report, eg:

warnings.simplefilter(’always’, gromacs.BadParameterWarning)

The following exceptions are defined:

exception GromacsError
Error raised when a gromacs tool fails.

Returns error code in the errno attribute and a string in strerror. # TODO: return status code and possibly error
message

exception MissingDataError
Error raised when prerequisite data are not available.

For analysis with gromacs.analysis.core.Simulation this typically means that the analyze()
method has to be run first.

exception ParseError
Error raised when parsing of a file failed.

The following warnings are defined:

1.3. Gromacs package 9

http://docs.python.org/library/warnings.html#module-warnings

GromacsWrapper Documentation, Release 0.1.12

exception GromacsFailureWarning
Warning about failure of a Gromacs tool.

exception GromacsImportWarning
Warns about problems with using a gromacs tool.

exception GromacsValueWarning
Warns about problems with the value of an option or variable.

exception AutoCorrectionWarning
Warns about cases when the code is choosing new values automatically.

exception BadParameterWarning
Warns if some parameters or variables are unlikely to be appropriate or correct.

exception MissingDataWarning
Warns when prerequisite data/files are not available.

exception UsageWarning
Warns if usage is unexpected/documentation ambiguous.

exception LowAccuracyWarning
Warns that results may possibly have low accuracy.

Logging

The library uses python’s logging module to keep a history of what it has been doing. In particular, ev-
ery wrapped Gromacs command logs its command line (including piped input) to the log file (configured in
gromacs.config.logfilename). This facilitates debugging or simple re-use of command lines for very quick
and dirty work. The logging facilty appends to the log file and time-stamps every entry. See gromacs.config for
more details on configuration.

Version

The package version can be queried with the gromacs.get_version() function.

get_version()
Return current package version as a string.

get_version_tuple()
Return current package version as a tuple (MAJOR, MINOR, PATCHLEVEL).

1.3.2 Gromacs core modules

This section documents the modules, classes, and functions on which the other parts of the package rely. The infor-
mation is probably mostly relevant to anyone who wants to extend the package.

gromacs.core – Core functionality

Here the basic command class GromacsCommand is defined. All Gromacs command classes in gromacs.tools
are automatically generated from it.

class Command(*args, **kwargs)
Wrap simple script or command.

Set up the command class.

10 Chapter 1. Contents

http://docs.python.org/library/logging.html

GromacsWrapper Documentation, Release 0.1.12

The arguments can always be provided as standard positional arguments such as

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v",
"input.dat"

In addition one can also use keyword arguments such as

c="config.conf", o="output.dat", repeats=3, v=True

These are automatically transformed appropriately according to simple rules:

•Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

•Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

__call__(*args, **kwargs)
Run command with the given arguments:

rc,stdout,stderr = command(*args, input=None, **kwargs)

All positional parameters *args and all gromacs **kwargs are passed on to the Gromacs command. input
and output keywords allow communication with the process via the python subprocess module.

Arguments

input [string, sequence] to be fed to the process’ standard input; elements of a sequence are
concatenated with newlines, including a trailing one [None]

stdin None or automatically set to PIPE if input given [None]

stdout how to handle the program’s stdout stream [None]

filehandle anything that behaves like a file object

None or True to see output on screen

False or PIPE returns the output as a string in the stdout parameter

stderr how to handle the stderr stream [STDOUT]

STDOUT merges standard error with the standard out stream

False or PIPE returns the output as a string in the stderr return parameter

None or True keeps it on stderr (and presumably on screen)

All other kwargs are passed on to the Gromacs tool.

Returns The shell return code rc of the command is always returned. Depending on the value of
output, various strings are filled with output from the command.

Notes By default, the process stdout and stderr are merged.

In order to chain different commands via pipes one must use the special
PopenWithInput object (see GromacsCommand.Popen() method) instead of
the simple call described here and first construct the pipeline explicitly and then call the
PopenWithInput.communicate() method.

STDOUT and PIPE are objects provided by the subprocess module. Any python stream
can be provided and manipulated. This allows for chaining of commands. Use

1.3. Gromacs package 11

http://docs.python.org/library/subprocess.html#module-subprocess

GromacsWrapper Documentation, Release 0.1.12

from subprocess import PIPE, STDOUT

when requiring these special streams (and the special boolean switches True/False cannot
do what you need.)

(TODO: example for chaining commands)

run(*args, **kwargs)
Run the command; args/kwargs are added or replace the ones given to the constructor.

transform_args(*args, **kwargs)
Transform arguments and return them as a list suitable for Popen.

Popen(*args, **kwargs)
Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to communicate() will not need to supply input. This is
necessary if one wants to chain the output from one command to an input from another.

Todo Write example.

help(long=False)
Print help; same as using ? in ipython. long=True also gives call signature.

command_name
Derive a class from command; typically one only has to set command_name to the name of the script or
executable. The full path is required if it cannot be found by searching PATH.

class GromacsCommand(*args, **kwargs)
Base class for wrapping a g_* command.

Limitations: User must have sourced GMXRC so that the python script can inherit the environment and find the
gromacs programs.

The class doc string is dynamically replaced by the documentation of the gromacs command when an instance
is created.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

12 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

Popen(*args, **kwargs)
Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to communicate() will not need to supply input. This is
necessary if one wants to chain the output from one command to an input from another.

Todo Write example.

commandline(*args, **kwargs)
Returns the commandline that run() uses (without pipes).

failuremodes
Available failure modes.

gmxdoc
Usage for the underlying Gromacs tool (cached).

help(long=False)
Print help; same as using ? in ipython. long=True also gives call signature.

1.3. Gromacs package 13

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

run(*args, **kwargs)
Run the command; args/kwargs are added or replace the ones given to the constructor.

transform_args(*args, **kwargs)
Combine arguments and turn them into gromacs tool arguments.

class PopenWithInput(*args, **kwargs)
Popen class that knows its input.

1.Set up the instance, including all the input it shoould receive.

2.Call PopenWithInput.communicate() later.

Note: Some versions of python have a bug in the subprocess module (issue 5179) which does not clean up
open file descriptors. Eventually code (such as this one) fails with the error:

OSError: [Errno 24] Too many open files

A weak workaround is to increase the available number of open file descriptors with ulimit -n 2048 and
run analysis in different scripts.

Initialize with the standard subprocess.Popen arguments.

Keywords

input string that is piped into the command

communicate(use_input=True)
Run the command, using the input that was set up on __init__ (for use_input = True)

gromacs.config – Configuration for GromacsWrapper

The config module provides configurable options for the whole package; eventually it might grow into a sophisticated
configuration system such as matplotlib’s rc system but right now it mostly serves to define which gromacs tools and
other scripts are offered in the package and where template files are located. If the user wants to change anything they
will still have to do it here in source until a better mechanism with rc files has been implemented.

User-supplied templates are stored under gromacs.config.configdir. Eventually this will also contain the
configuration options currently hard-coded in gromacs.config.

configdir
Directory to store user templates and rc files. The default value is ~/.gromacswrapper.

path
Search path for user queuing scripts and templates. The internal package-supplied templates are always
searched last via gromacs.config.get_templates(). Modify gromacs.config.path directly
in order to customize the template and qscript searching. By default it has the value [’.’, qscriptdir,
templatesdir]. (Note that it is not a good idea to have template files and qscripts with the same name as
they are both searched on the same path.)

The user should execute gromacs.config.setup() at least once to prepare the user configurable area in their
home directory:

import gromacs
gromacs.config.setup()

14 Chapter 1. Contents

http://bugs.python.org/issue5179
http://docs.python.org/library/subprocess.html#subprocess.Popen

GromacsWrapper Documentation, Release 0.1.12

Logging

Gromacs commands log their invocation to a log file; typically at loglevel INFO (see the python logging module for
details).

logfilename
File name for the log file; all gromacs command and many utility functions (e.g. in gromacs.cbook and
gromacs.setup) append messages there. Warnings and errors are also recorded here. The default is gro-
macs.log.

loglevel_console
The default loglevel that is still printed to the console.

loglevel_file
The default loglevel that is still written to the logfilename.

Gromacs tools and scripts

load_* variables are lists that contain instructions to other parts of the code which packages and scripts should be
wrapped.

load_tools
Python list of all tool file names. Automatically filled from gmx_tools and gmx_extra_tools, depending
on the values in gmx_tool_groups.

load_scripts
3rd party analysis scripts and tools; this is a list of triplets of

(script name/path, command name, doc string)

(See the source code for examples.)

load_tools is populated by listing gmx_* tool group variables in gmx_tool_groups.

gmx_tool_groups
List of the variables in gromacs.tools that should be loaded. Possible values: gmx_tools, gmx_extra_tools.
Right now these are variable names in gromacs.config, referencing gromacs.config.gmx_tools
and gromacs.config.gmx_extra_tools.

The tool groups variables are strings that contain white-space separated file names of Gromacs tools. These lists
determine which tools are made available as classes in gromacs.tools.

gmx_tools
Contains the file names of all Gromacs tools for which classes are generated. Editing this list has only an effect
when the package is reloaded. If you want additional tools then add the, to the source (config.py) or derive
new classes manually from gromacs.core.GromacsCommand. (Eventually, this functionality will be in
a per-user configurable file.) The current list was generated from Gromacs 4.0.99 (git). Removed (because of
various issues)

•g_kinetics

gmx_extra_tools
Additional gromacs tools (add gmx_extra_tools to gromacs.config.gmx_tool_groups to enable them,
provided the binaries have been provided on the PATH).

1.3. Gromacs package 15

http://docs.python.org/library/logging.html

GromacsWrapper Documentation, Release 0.1.12

Location of template files

Template variables list files in the package that can be used as templates such as run input files. Because the package
can be a zipped egg we actually have to unwrap these files at this stage but this is completely transparent to the user.

qscriptdir
Directory to store user supplied queuing system scripts. The default value is
~/.gromacswrapper/qscripts.

templatesdir
Directory to store user supplied template files such as mdp files. The default value is
~/.gromacswrapper/templates.

templates
GromacsWrapper comes with a number of templates for run input files and queuing system scripts. They are
provided as a convenience and examples but WITHOUT ANY GUARANTEE FOR CORRECTNESS OR
SUITABILITY FOR ANY PURPOSE.

All template filenames are stored in gromacs.config.templates. Templates have to be extracted from
the GromacsWrapper python egg file because they are used by external code: find the actual file locations from
this variable.

Gromacs mdp templates

These are supplied as examples and there is NO GUARANTEE THAT THEY PRODUCE SENSI-
BLE OUTPUT — check for yourself! Note that only existing parameter names can be modified with
gromacs.cbook.edit_mdp() at the moment; if in doubt add the parameter with its gromacs
default value (or empty values) and modify later with edit_mdp().

The safest bet is to use one of the mdout.mdp files produced by gromacs.grompp() as a tem-
plate as this mdp contains all parameters that are legal in the current version of Gromacs.

Queuing system templates

The queing system scripts are highly specific and you will need to add your own into
gromacs.config.qscriptdir. See gromacs.qsub for the format and how these files are
processed.

qscript_template
The default template for SGE/PBS run scripts.

setup()
Create the directories in which the user can store template and config files.

This function can be run repeatedly without harm.

Accessing configuration data

The following functions can be used to access configuration data. Note that files are searched first with their full
filename, then in all directories listed in gromacs.config.path, and finally within the package itself.

get_template(t)
Find template file t and return its real path.

t can be a single string or a list of strings. A string should be one of

1.a relative or absolute path,

2.a file in one of the directories listed in gromacs.config.path,

16 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

3.a filename in the package template directory (defined in the template dictionary
gromacs.config.templates) or

4.a key into templates.

The first match (in this order) is returned. If the argument is a single string then a single string is returned,
otherwise a list of strings.

Arguments t : template file or key (string or list of strings)

Returns os.path.realpath(t) (or a list thereof)

Raises ValueError if no file can be located.

get_templates(t)
Find template file(s) t and return their real paths.

t can be a single string or a list of strings. A string should be one of

1.a relative or absolute path,

2.a file in one of the directories listed in gromacs.config.path,

3.a filename in the package template directory (defined in the template dictionary
gromacs.config.templates) or

4.a key into templates.

The first match (in this order) is returned for each input argument.

Arguments t : template file or key (string or list of strings)

Returns list of os.path.realpath(t)

Raises ValueError if no file can be located.

gromacs.formats – Accessing various files

This module contains classes that represent data files on disk. Typically one creates an instance and

• reads from a file using a read() method, or

• populates the instance (in the simplest case with a set() method) and the uses the write() method to write
the data to disk in the appropriate format.

For function data there typically also exists a plot() method which produces a graph (using matplotlib).

The module defines some classes that are used in other modules; they do not make use of gromacs.tools or
gromacs.cbook and can be safely imported at any time.

Classes

class XVG(filename=None, names=None, permissive=False, **kwargs)
Class that represents the numerical data in a grace xvg file.

All data must be numerical. NAN and INF values are supported via python’s float() builtin function.

The array attribute can be used to access the the array once it has been read and parsed. The ma attribute is a
numpy masked array (good for plotting).

Conceptually, the file on disk and the XVG instance are considered the same data. Whenever the filename
for I/O (XVG.read() and XVG.write()) is changed then the filename associated with the instance is also
changed to reflect the association between file and instance.

1.3. Gromacs package 17

http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/stdtypes.html#set
http://docs.python.org/library/functions.html#float

GromacsWrapper Documentation, Release 0.1.12

With the permissive = True flag one can instruct the file reader to skip unparseable lines. In this case the line
numbers of the skipped lines are stored in XVG.corrupted_lineno.

A number of attributes are defined to give quick access to simple statistics such as

•mean: mean of all data columns

•std: standard deviation

•min: minimum of data

•max: maximum of data

•error: error on the mean, taking correlation times into account (see also
XVG.set_correlparameters())

•tc: correlation time of the data (assuming a simple exponential decay of the fluctuations around the mean)

These attributes are numpy arrays that correspond to the data columns, i.e. :attr:‘XVG.array‘[1:].

Note:

•Only simple XY or NXY files are currently supported, not Grace files that contain multiple data sets
separated by ‘&’.

•Any kind of formatting (i.e. xmgrace commands) is discarded.

Initialize the class from a xvg file.

Arguments

filename is the xvg file; it can only be of type XY or NXY. If it is supplied then it is read and
parsed when XVG.array is accessed.

names optional labels for the columns (currently only written as comments to file); string with
columns separated by commas or a list of strings

permissive False raises a ValueError and logs and errior when encountering data lines
that it cannot parse. True ignores those lines and logs a warning—this is a risk because it
might read a corrupted input file [False]

array
Represent xvg data as a (cached) numpy array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 ... the array
a will be a[0] = X, a[1] = Y1,

error
Error on the mean of the data, taking the correlation time into account.

See Frenkel and Smit, Academic Press, San Diego 2002, p526:

error = sqrt(2*tc*acf[0]/T)

where acf() is the autocorrelation function of the fluctuations around the mean y-<y>, tc is the correlation
time, and T the total length of the simulation.

errorbar(**kwargs)
Quick hack: errorbar plot.

Set columns to select [x, y, dy].

ma
Represent data as a masked array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 ... the array
a will be a[0] = X, a[1] = Y1,

18 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.ValueError

GromacsWrapper Documentation, Release 0.1.12

inf and nan are filtered via numpy.isfinite().

max
Maximum of the data columns.

mean
Mean value of all data columns.

min
Minimum of the data columns.

parse()
Read and cache the file as a numpy array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 ... the array
a will be a[0] = X, a[1] = Y1,

plot(**kwargs)
Plot xvg file data.

The first column of the data is always taken as the abscissa X. Additional columns are plotted as ordinates
Y1, Y2, ...

In the special case that there is only a single column then this column is plotted against the index, i.e. (N,
Y).

Keywords

columns [list] Select the columns of the data to be plotted; the list is used as a numpy.array
extended slice. The default is to use all columns. Columns are selected after a transform.

transform [function] function transform(array) -> array which transforms the
original array; must return a 2D numpy array of shape [X, Y1, Y2, ...] where X, Y1, ... are
column vectors. By default the transformation is the identity [lambda x: x].

maxpoints [int] limit the total number of data points; matplotlib has issues processing png
files with >100,000 points and pdfs take forever to display. Set to None if really all data
should be displayed. At the moment we simply subsample the data at regular intervals.
[10000]

kwargs All other keyword arguments are passed on to pylab.plot().

read(filename=None)
Read and parse xvg file filename.

set(a)
Set the array data from a (i.e. completely replace).

No sanity checks at the moment...

set_correlparameters(**kwargs)
Set and change the parameters for calculations involving correlation functions.

Keywords

nstep only process every nstep data point to speed up the FFT; if left empty a default is
chosen that produces roughly 25,000 data points (or whatever is set in XVG.ncorrel).

force force recalculating correlation data even if cached values are available

kwargs see numkit.timeseries.tcorrel() for other options

std
Standard deviation from the mean of all data columns.

1.3. Gromacs package 19

http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html#numpy.isfinite

GromacsWrapper Documentation, Release 0.1.12

tc
Correlation time of the data.

See XVG.error() for details.

write(filename=None)
Write array to xvg file filename in NXY format.

Note: Only plain files working at the moment, not compressed.

class NDX(filename=None, **kwargs)
Gromacs index file.

Represented as a ordered dict where the keys are index group names and values are numpy arrays of atom
numbers.

Use the NDX.read() and NDX.write() methods for I/O. Access groups by name via the NDX.get() and
NDX.set() methods.

Alternatively, simply treat the NDX instance as a dictionary. Setting a key automatically transforms the new
value into a integer 1D numpy array (not a set, as would be the make_ndx behaviour).

Note: The index entries themselves are ordered and can contain duplicates so that output from
NDX can be easily used for g_dih and friends. If you need set-like behaviour you will have do
use gromacs.formats.uniqueNDX or gromacs.cbook.IndexBuilder (which uses make_ndx
throughout).

Example

Read index file, make new group and write to disk:

ndx = NDX()
ndx.read(’system.ndx’)
print ndx[’Protein’]
ndx[’my_group’] = [2, 4, 1, 5] # add new group
ndx.write(’new.ndx’)

Or quicker (replacing the input file system.ndx):

ndx = NDX(’system’) # suffix .ndx is automatically added
ndx[’chi1’] = [2, 7, 8, 10]
ndx.write()

format
standard ndx file format: ‘%6d’

get(name)
Return index array for index group name.

groups
Return a list of all groups.

ncol
standard ndx file format: 15 columns

ndxlist
Return a list of groups in the same format as gromacs.cbook.get_ndx_groups().

Format: [{‘name’: group_name, ‘natoms’: number_atoms, ‘nr’: # group_number},]

read(filename=None)
Read and parse index file filename.

20 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

set(name, value)
Set or add group name as a 1D numpy array.

size(name)
Return number of entries for group name.

sizes
Return a dict with group names and number of entries,

write(filename=None, ncol=15, format=’%6d’)
Write index file to filename (or overwrite the file that the index was read from)

class uniqueNDX(filename=None, **kwargs)
Index that behaves like make_ndx, i.e. entries behaves as sets, not lists.

The index lists behave like sets: - adding sets with ‘+’ is equivalent to a logical OR: x + y == “x | y” - subtraction
‘-‘ is AND: x - y == “x & y” - see join() for ORing multiple groups (x+y+z+...)

Example :: I = uniqueNDX(‘system.ndx’) I[’SOLVENT’] = I[’SOL’] + I[’NA+’] + I[’CL-‘]

join(*groupnames)
Return an index group that contains atoms from all groupnames.

The method will silently ignore any groups that are not in the index.

Example

Always make a solvent group from water and ions, even if not all ions are present in all simulations:

I[’SOLVENT’] = I.join(’SOL’, ’NA+’, ’K+’, ’CL-’)

class GRO(**kwargs)
Class that represents a GROMOS (gro) structure file.

File format:

(Not implemented yet)

read(filename=None)
Read and parse index file filename.

gromacs.utilities – Helper functions and classes

The module defines some convenience functions and classes that are used in other modules; they do not make use of
gromacs.tools or gromacs.cbook and can be safely imported at any time.

Classes

FileUtils provides functions related to filename handling. It can be used as a base or mixin class. The
gromacs.analysis.Simulation class is derived from it.

class FileUtils()
Mixin class to provide additional file-related capabilities.

check_file_exists(filename, resolve=’exception’, force=None)
If a file exists then continue with the action specified in resolve.

resolve must be one of

“ignore” always return False

1.3. Gromacs package 21

GromacsWrapper Documentation, Release 0.1.12

“indicate” return True if it exists

“warn” indicate and issue a UserWarning

“exception” raise IOError if it exists

Alternatively, set force for the following behaviour (which ignores resolve):

True same as resolve = “ignore” (will allow overwriting of files)

False same as resolve = “exception” (will prevent overwriting of files)

None ignored, do whatever resolve says

default_extension
Default extension for files read/written by this class.

filename(filename=None, ext=None, set_default=False, use_my_ext=False)
Supply a file name for the class object.

Typical uses:

fn = filename() ---> <default_filename>
fn = filename(’name.ext’) ---> ’name’
fn = filename(ext=’pickle’) ---> <default_filename>’.pickle’
fn = filename(’name.inp’,’pdf’) --> ’name.pdf’
fn = filename(’foo.pdf’,ext=’png’,use_my_ext=True) --> ’foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and if provided, another ex-
tension is appended. Chooses a default if no filename is given.

Raises a ValueError exception if no default file name is known.

If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a default ext tension.

infix_filename(name, default, infix, ext=None)
Unless name is provided, insert infix before the extension ext of default.

class AttributeDict()
A dictionary with pythonic access to keys as attributes — useful for interactive work.

class Timedelta()
Extension of datetime.timedelta.

Provides attributes ddays, dhours, dminutes, dseconds to measure the delta in normal time units.

ashours gives the total time in fractional hours.

Functions

Some additional convenience functions that deal with files and directories:

openany(directory, [mode=’r’])
Context manager to open a compressed (bzip2, gzip) or plain file (uses anyopen()).

anyopen(datasource, mode=’r’)
Open datasource (gzipped, bzipped, uncompressed) and return a stream.

Arguments

•datasource: a file or a stream

22 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.UserWarning
http://docs.python.org/library/exceptions.html#exceptions.IOError
http://docs.python.org/library/datetime.html#datetime.timedelta

GromacsWrapper Documentation, Release 0.1.12

•mode: ‘r’ or ‘w’

realpath(*args)
Join all args and return the real path, rooted at /.

Returns None if any of the args is none.

in_dir(directory, [create=True])
Context manager to execute a code block in a directory.

•The directory is created if it does not exist (unless create = False is set)

•At the end or after an exception code always returns to the directory that was the current directory before
entering the block.

find_first(filename, suffices=None)
Find first filename with a suffix from suffices.

Arguments

filename base filename; this file name is checked first

suffices list of suffices that are tried in turn on the root of filename; can contain the ext separator
(os.path.extsep) or not

Returns The first match or None.

withextsep(extensions)
Return list in which each element is guaranteed to start with os.path.extsep.

Functions that improve list processing and which do not treat strings as lists:

iterable(obj)
Returns True if obj can be iterated over and is not a string.

asiterable(obj)
Returns obj so that it can be iterated over; a string is not treated as iterable

Functions that help handling Gromacs files:

unlink_f(path)
Unlink path but do not complain if file does not exist.

unlink_gmx(*args)
Unlink (remove) Gromacs file(s) and all corresponding backups.

unlink_gmx_backups(*args)
Unlink (rm) all backup files corresponding to the listed files.

number_pdbs(*args, **kwargs)
Rename pdbs x1.pdb ... x345.pdb –> x0001.pdb ... x0345.pdb

Arguments

• args: filenames or glob patterns (such as “pdb/md*.pdb”)

• format: format string including keyword num [”%(num)04d”]

Functions that make working with matplotlib easier:

activate_subplot(numPlot)
Make subplot numPlot active on the canvas.

Use this if a simple subplot(numRows, numCols, numPlot) overwrites the subplot instead of acti-
vating it.

1.3. Gromacs package 23

http://matplotlib.sourceforge.net/

GromacsWrapper Documentation, Release 0.1.12

remove_legend(ax=None)
Remove legend for axes or gca.

See http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html

Miscellaneous functions:

convert_aa_code(x)
Converts between 3-letter and 1-letter amino acid codes.

Data

amino_acid_codes
translation table for 1-letter codes –> 3-letter codes .. Note: This does not work for HISB and non-default charge
state aa!

gromacs.tools – Gromacs commands classes

A Gromacs command class can be thought of as a factory function that produces an instance of a gromacs command
(gromacs.core.GromacsCommand) with initial default values.

By convention, a class has the capitalized name of the corresponding Gromacs tool; dots are replaced by underscores
to make it a valid python identifier.

The list of Gromacs tools to be loaded is configured in gromacs.config.gmx_tool_groups.

It is also possible to extend the basic commands and patch in additional functionality. For example, the
GromacsCommandMultiIndex class makes a command accept multiple index files and concatenates them on
the fly; the behaviour mimics Gromacs’ “multi-file” input that has not yet been enabled for all tools.

class GromacsCommandMultiIndex(**kwargs)
Initialize instance.

1.Sets up the combined index file.

2.Inititialize GromacsCommand with the new index file.

See the documentation for gromacs.core.GromacsCommand for details.

run(*args, **kwargs)
Run the command; make a combined multi-index file if necessary.

_fake_multi_ndx(**kwargs)
Combine multiple index file into a single one and return appropriate kwargs.

Calling the method combines multiple index files into a a single temporary one so that Gromacs tools that
do not (yet) support multi file input for index files can be used transparently as if they did.

If a temporary index file is required then it is deleted once the object is destroyed.

Returns The method returns the input keyword arguments with the necessary changes to use the
temporary index files.

Keywords Only the listed keywords have meaning for the method:

n [filename or list of filenames] possibly multiple index files; n is replaced by the name of
the temporary index file.

s [filename] structure file (tpr, pdb, ...) or None; if a structure file is supplied then the
Gromacs default index groups are automatically added to the temporary indexs file.

24 Chapter 1. Contents

http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html

GromacsWrapper Documentation, Release 0.1.12

Example Used in derived classes that replace the standard run() (or __init__()) methods
with something like:

def run(self,*args,**kwargs):
kwargs = self._fake_multi_ndx(**kwargs)
return super(G_mindist, self).run(*args, **kwargs)

__del__()
Clean up temporary multi-index files if they were used.

Example

In this example we create two instances of the gromacs.tools.Trjconv command (which runs the Gromacs
trjconv command):

import gromacs.tools as tools

trjconv = tools.Trjconv()
trjconv_compact = tools.Trjconv(ur=’compact’, center=True, boxcenter=’tric’, pbc=’mol’,

input=(’protein’,’system’),
doc="Returns a compact representation of the system centered on the protein")

The first one, trjconv, behaves as the standard commandline tool but the second one, trjconv_compact, will
by default create a compact representation of the input data by taking into account the shape of the unit cell. Of
course, the same effect can be obtained by providing the corresponding arguments to trjconv but by naming the
more specific command differently one can easily build up a library of small tools that will solve a specifi, repeatedly
encountered problem reliably. This is particularly helpful when doing interactive work.

Gromacs tools

The documentation of all wrapped gromacs tools is auto-generated and can be found in Wrapped Gromacs Tools. Here
only two examples (Mdrun and GridMAT_MD) are shown.

class Mdrun(*args, **kwargs)
Gromacs tool ‘mdrun’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

1.3. Gromacs package 25

http://docs.python.org/reference/datamodel.html#object.__init__

GromacsWrapper Documentation, Release 0.1.12

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class GridMAT_MD(*args, **kwargs)
External tool ‘GridMAT-MD.pl’

GridMAT-MD: A Grid-based Membrane Analysis Tool for use with Molecular Dynamics.

This GridMAT-MD is a patched version of the original GridMAT-MD.pl v1.0.2, written by WJ Allen, JA
Lemkul and DR Bevan. The original version is available from the GridMAT-MD home page,

Please cite

W. J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Anal-
ysis Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

when using this programme.

Usage:

class GridMAT_MD(config, [structure])

26 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError
http://www.bevanlab.biochem.vt.edu/GridMAT-MD/index.html

GromacsWrapper Documentation, Release 0.1.12

Arguments

• config : See the original documentation for a description for the configuration file.

• structure : A gro or pdb file that overrides the value for bilayer in the configuration file.

.

Set up the command class.

The arguments can always be provided as standard positional arguments such as

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v",
"input.dat"

In addition one can also use keyword arguments such as

c="config.conf", o="output.dat", repeats=3, v=True

These are automatically transformed appropriately according to simple rules:

•Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

•Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

Wrapped Gromacs tools

This is the auto-generated list of all Gromacs tools that were available when this documentation was built. They are
part of the Gromacs core modules.

gromacs.tools – Gromacs commands classes

A Gromacs command class can be thought of as a factory function that produces an instance of a gromacs command
(gromacs.core.GromacsCommand) with initial default values.

By convention, a class has the capitalized name of the corresponding Gromacs tool; dots are replaced by underscores
to make it a valid python identifier.

The list of Gromacs tools to be loaded is configured in gromacs.config.gmx_tool_groups.

It is also possible to extend the basic commands and patch in additional functionality. For example, the
GromacsCommandMultiIndex class makes a command accept multiple index files and concatenates them on
the fly; the behaviour mimics Gromacs’ “multi-file” input that has not yet been enabled for all tools.

class GromacsCommandMultiIndex(**kwargs)
Initialize instance.

1.Sets up the combined index file.

2.Inititialize GromacsCommand with the new index file.

See the documentation for gromacs.core.GromacsCommand for details.

run(*args, **kwargs)
Run the command; make a combined multi-index file if necessary.

1.3. Gromacs package 27

GromacsWrapper Documentation, Release 0.1.12

_fake_multi_ndx(**kwargs)
Combine multiple index file into a single one and return appropriate kwargs.

Calling the method combines multiple index files into a a single temporary one so that Gromacs tools that
do not (yet) support multi file input for index files can be used transparently as if they did.

If a temporary index file is required then it is deleted once the object is destroyed.

Returns The method returns the input keyword arguments with the necessary changes to use the
temporary index files.

Keywords Only the listed keywords have meaning for the method:

n [filename or list of filenames] possibly multiple index files; n is replaced by the name of
the temporary index file.

s [filename] structure file (tpr, pdb, ...) or None; if a structure file is supplied then the
Gromacs default index groups are automatically added to the temporary indexs file.

Example Used in derived classes that replace the standard run() (or __init__()) methods
with something like:

def run(self,*args,**kwargs):
kwargs = self._fake_multi_ndx(**kwargs)
return super(G_mindist, self).run(*args, **kwargs)

__del__()
Clean up temporary multi-index files if they were used.

Example In this example we create two instances of the gromacs.tools.Trjconv command (which runs the
Gromacs trjconv command):

import gromacs.tools as tools

trjconv = tools.Trjconv()
trjconv_compact = tools.Trjconv(ur=’compact’, center=True, boxcenter=’tric’, pbc=’mol’,

input=(’protein’,’system’),
doc="Returns a compact representation of the system centered on the protein")

The first one, trjconv, behaves as the standard commandline tool but the second one, trjconv_compact, will
by default create a compact representation of the input data by taking into account the shape of the unit cell. Of
course, the same effect can be obtained by providing the corresponding arguments to trjconv but by naming the
more specific command differently one can easily build up a library of small tools that will solve a specifi, repeatedly
encountered problem reliably. This is particularly helpful when doing interactive work.

Gromacs tools
class G_spatial(*args, **kwargs)

Gromacs tool ‘g_spatial’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

28 Chapter 1. Contents

http://docs.python.org/reference/datamodel.html#object.__init__

GromacsWrapper Documentation, Release 0.1.12

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Sigeps(*args, **kwargs)
Gromacs tool ‘sigeps’.

Set up the command with gromacs flags as keyword arguments.

1.3. Gromacs package 29

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

30 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

doc [string] additional documentation []

class A_gridcalc(*args, **kwargs)
Gromacs tool ‘a_gridcalc’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

1.3. Gromacs package 31

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_filter(*args, **kwargs)
Gromacs tool ‘g_filter’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

32 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Protonate(*args, **kwargs)
Gromacs tool ‘protonate’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 33

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Genrestr(*args, **kwargs)
Gromacs tool ‘genrestr’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

34 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Trjcat(*args, **kwargs)
Gromacs tool ‘trjcat’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 35

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_helixorient(*args, **kwargs)
Gromacs tool ‘g_helixorient’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

36 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_gyrate(*args, **kwargs)
Gromacs tool ‘g_gyrate’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 37

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

38 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_densmap(*args, **kwargs)
Gromacs tool ‘g_densmap’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 39

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_zcoord(*args, **kwargs)
Gromacs tool ‘g_zcoord’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

40 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_nmens(*args, **kwargs)
Gromacs tool ‘g_nmens’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 41

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Grompp(*args, **kwargs)
Gromacs tool ‘grompp’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

42 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_angle(*args, **kwargs)
Gromacs tool ‘g_angle’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 43

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Trjconv(*args, **kwargs)
Gromacs tool ‘trjconv’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

44 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_rama(*args, **kwargs)
Gromacs tool ‘g_rama’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 45

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

46 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_sgangle(*args, **kwargs)
Gromacs tool ‘g_sgangle’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 47

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_anaeig(*args, **kwargs)
Gromacs tool ‘g_anaeig’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

48 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Genion(*args, **kwargs)
Gromacs tool ‘genion’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 49

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_sham(*args, **kwargs)
Gromacs tool ‘g_sham’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

50 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_enemat(*args, **kwargs)
Gromacs tool ‘g_enemat’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 51

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_density(*args, **kwargs)
Gromacs tool ‘g_density’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

52 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_nmeig(*args, **kwargs)
Gromacs tool ‘g_nmeig’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 53

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

54 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class Tpbconv(*args, **kwargs)
Gromacs tool ‘tpbconv’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 55

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_tcaf(*args, **kwargs)
Gromacs tool ‘g_tcaf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

56 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Mdrun_d(*args, **kwargs)
Gromacs tool ‘mdrun_d’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 57

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Genbox(*args, **kwargs)
Gromacs tool ‘genbox’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

58 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_rms(*args, **kwargs)
Gromacs tool ‘g_rms’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 59

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_current(*args, **kwargs)
Gromacs tool ‘g_current’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

60 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_flux(*args, **kwargs)
Gromacs tool ‘g_flux’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 61

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

62 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_dielectric(*args, **kwargs)
Gromacs tool ‘g_dielectric’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 63

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_msd(*args, **kwargs)
Gromacs tool ‘g_msd’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

64 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_disre(*args, **kwargs)
Gromacs tool ‘g_disre’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 65

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_analyze(*args, **kwargs)
Gromacs tool ‘g_analyze’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

66 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Mdrun(*args, **kwargs)
Gromacs tool ‘mdrun’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 67

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_confrms(*args, **kwargs)
Gromacs tool ‘g_confrms’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

68 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Trjorder(*args, **kwargs)
Gromacs tool ‘trjorder’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 69

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

70 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_principal(*args, **kwargs)
Gromacs tool ‘g_principal’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 71

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_hbond(*args, **kwargs)
Gromacs tool ‘g_hbond’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

72 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Anadock(*args, **kwargs)
Gromacs tool ‘anadock’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 73

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_rdf(*args, **kwargs)
Gromacs tool ‘g_rdf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

74 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_sdf(*args, **kwargs)
Gromacs tool ‘g_sdf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 75

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Gmxdump(*args, **kwargs)
Gromacs tool ‘gmxdump’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

76 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_h2order(*args, **kwargs)
Gromacs tool ‘g_h2order’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 77

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

78 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_traj(*args, **kwargs)
Gromacs tool ‘g_traj’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 79

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_count(*args, **kwargs)
Gromacs tool ‘g_count’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

80 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Gmxcheck(*args, **kwargs)
Gromacs tool ‘gmxcheck’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 81

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_mindist(**kwargs)
Gromacs tool ‘g_mindist’ (with patch to handle multiple ndx files).

Initialize instance.

1.Sets up the combined index file.

2.Inititialize GromacsCommand with the new index file.

See the documentation for gromacs.core.GromacsCommand for details.

class G_sas(*args, **kwargs)
Gromacs tool ‘g_sas’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

82 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_nmtraj(*args, **kwargs)
Gromacs tool ‘g_nmtraj’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

1.3. Gromacs package 83

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_bond(*args, **kwargs)
Gromacs tool ‘g_bond’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

84 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

1.3. Gromacs package 85

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class A_ri3dc(*args, **kwargs)
Gromacs tool ‘a_ri3Dc’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

86 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_covar(*args, **kwargs)
Gromacs tool ‘g_covar’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

1.3. Gromacs package 87

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Editconf(*args, **kwargs)
Gromacs tool ‘editconf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

88 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Pdb2gmx(*args, **kwargs)
Gromacs tool ‘pdb2gmx’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

1.3. Gromacs package 89

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_helix(*args, **kwargs)
Gromacs tool ‘g_helix’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

90 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Luck(*args, **kwargs)
Gromacs tool ‘luck’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

1.3. Gromacs package 91

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Mk_angndx(*args, **kwargs)
Gromacs tool ‘mk_angndx’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

92 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

1.3. Gromacs package 93

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_mdmat(*args, **kwargs)
Gromacs tool ‘g_mdmat’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

94 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Eneconv(*args, **kwargs)
Gromacs tool ‘eneconv’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

1.3. Gromacs package 95

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_energy(*args, **kwargs)
Gromacs tool ‘g_energy’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

96 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_clustsize(*args, **kwargs)
Gromacs tool ‘g_clustsize’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

1.3. Gromacs package 97

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class GridMAT_MD(*args, **kwargs)
External tool ‘GridMAT-MD.pl’

GridMAT-MD: A Grid-based Membrane Analysis Tool for use with Molecular Dynamics.

This GridMAT-MD is a patched version of the original GridMAT-MD.pl v1.0.2, written by WJ Allen, JA
Lemkul and DR Bevan. The original version is available from the GridMAT-MD home page,

Please cite

W. J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Anal-
ysis Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

when using this programme.

Usage:

class GridMAT_MD(config, [structure])

Arguments

• config : See the original documentation for a description for the configuration file.

• structure : A gro or pdb file that overrides the value for bilayer in the configuration file.

.

Set up the command class.

The arguments can always be provided as standard positional arguments such as

98 Chapter 1. Contents

http://www.bevanlab.biochem.vt.edu/GridMAT-MD/index.html

GromacsWrapper Documentation, Release 0.1.12

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v",
"input.dat"

In addition one can also use keyword arguments such as

c="config.conf", o="output.dat", repeats=3, v=True

These are automatically transformed appropriately according to simple rules:

•Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

•Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

class G_dipoles(*args, **kwargs)
Gromacs tool ‘g_dipoles’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 99

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_lie(*args, **kwargs)
Gromacs tool ‘g_lie’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

100 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Xpm2ps(*args, **kwargs)
Gromacs tool ‘xpm2ps’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 101

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_cluster(*args, **kwargs)
Gromacs tool ‘g_cluster’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

102 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_wham(*args, **kwargs)
Gromacs tool ‘g_wham’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 103

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

104 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_vanhove(*args, **kwargs)
Gromacs tool ‘g_vanhove’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 105

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_rotacf(*args, **kwargs)
Gromacs tool ‘g_rotacf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

106 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_spol(*args, **kwargs)
Gromacs tool ‘g_spol’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 107

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Make_edi(*args, **kwargs)
Gromacs tool ‘make_edi’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

108 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_dist(**kwargs)
Gromacs tool ‘g_dist’ (with patch to handle multiple ndx files).

Initialize instance.

1.Sets up the combined index file.

2.Inititialize GromacsCommand with the new index file.

See the documentation for gromacs.core.GromacsCommand for details.

class G_potential(*args, **kwargs)
Gromacs tool ‘g_potential’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

1.3. Gromacs package 109

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_ri3dc(*args, **kwargs)
Gromacs tool ‘g_ri3Dc’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

110 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

1.3. Gromacs package 111

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_velacc(*args, **kwargs)
Gromacs tool ‘g_velacc’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

112 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class X2top(*args, **kwargs)
Gromacs tool ‘x2top’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

1.3. Gromacs package 113

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_polystat(*args, **kwargs)
Gromacs tool ‘g_polystat’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

114 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Wheel(*args, **kwargs)
Gromacs tool ‘wheel’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

1.3. Gromacs package 115

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_bundle(*args, **kwargs)
Gromacs tool ‘g_bundle’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

116 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_order(*args, **kwargs)
Gromacs tool ‘g_order’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

1.3. Gromacs package 117

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_saltbr(*args, **kwargs)
Gromacs tool ‘g_saltbr’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

118 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

1.3. Gromacs package 119

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class Do_dssp(*args, **kwargs)
Gromacs tool ‘do_dssp’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

120 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_dih(*args, **kwargs)
Gromacs tool ‘g_dih’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

1.3. Gromacs package 121

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Make_ndx(*args, **kwargs)
Gromacs tool ‘make_ndx’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

122 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_dyndom(*args, **kwargs)
Gromacs tool ‘g_dyndom’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

1.3. Gromacs package 123

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class Genconf(*args, **kwargs)
Gromacs tool ‘genconf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

124 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_morph(*args, **kwargs)
Gromacs tool ‘g_morph’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

1.3. Gromacs package 125

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_chi(*args, **kwargs)
Gromacs tool ‘g_chi’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

126 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

1.3. Gromacs package 127

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

class G_sorient(*args, **kwargs)
Gromacs tool ‘g_sorient’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

128 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

class G_rmsf(*args, **kwargs)
Gromacs tool ‘g_rmsf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=[’md1.xtc’,’md2.xtc’], o=’processed.xtc’, t=200, ...)

which would correspond to running the command in the shell as

GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as -v) are given as python positional arguments (’v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ’nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input -f file1 file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, -or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or=’mindistres.xvg’)

Command execution

The command is executed with the run() method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

1.3. Gromacs package 129

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.12

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails

‘warn’ issue a GromacsFailureWarning

None just continue silently

doc [string] additional documentation []

1.3.3 Gromacs building blocks

Building blocks are small classes or functions that can be freely combined in setup or analysis scripts or used interac-
tively. These modules act as “library” for common tasks.

gromacs.cbook – Gromacs Cook Book

The cbook (cook book) module contains short recipes for tasks that are often repeated. In the simplest case this is
just one of the gromacs tools with a certain set of default command line options.

By abstracting and collecting these invocations here, errors can be reduced and the code snippets can also serve as
canonical examples for how to do simple things.

Miscellaneous canned Gromacs commands

Simple commands with new default options so that they solve a specific problem (see also Manipulating trajectories
and structures):

rmsd_backbone([s="md.tpr", f="md.xtc", [...]])
Computes the RMSD of the “Backbone” atoms after fitting to the “Backbone” (including both translation and
rotation).

Manipulating trajectories and structures

Standard invocations for manipulating trajectories.

trj_compact([s="md.tpr", f="md.xtc", o="compact.xtc", [...]])
Writes an output trajectory or frame with a compact representation of the system centered on the protein. It
centers on the group “Protein” and outputs the whole “System” group.

trj_xyfitted([s="md.tpr", f="md.xtc", [...]])
Writes a trajectory centered and fitted to the protein in the XY-plane only.

This is useful for membrane proteins. The system must be oriented so that the membrane is in the XY plane.
The protein backbone is used for the least square fit, centering is done for the whole protein., but this can be
changed with the input = (’backbone’, ’protein’,’system’) keyword.

Note: Gromacs 4.x only

130 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

trj_fitandcenter(xy=False, **kwargs)
Center everything and make a compact representation (pass 1) and fit the system to a reference (pass 2).

Keywords

s input structure file (tpr file required to make molecule whole)

f input trajectory

o output trajectory

input

A list with three groups. The default is [’backbone’, ‘protein’,’system’]

The fit command uses all three (1st for least square fit, 2nd for centering, 3rd for output),
the centered/make-whole stage use 2nd for centering and 3rd for output.

input1 If input1 is supplied then input is used exclusively for the fitting stage (pass 2) and input1
for the centering (pass 1).

n Index file used for pass 1 and pass 2.

n1 If n1 is supplied then index n1 is only used for pass 1 (centering) and n for pass 2 (fitting).

xy [boolean] If True then only do a rot+trans fit in the xy plane (good for membrane simula-
tions); default is False.

kwargs All other arguments are passed to Trjconv.

Note that here we first center the protein and create a compact box, using -pbc mol -ur compact
-center -boxcenter tric and write an intermediate xtc. Then in a second pass we perform a rota-
tion+translation fit (or restricted to the xy plane if xy = True is set) on the intermediate xtc to produce the final
trajectory. Doing it in this order has the disadvantage that the solvent box is rotating around the protein but the
opposite order (with center/compact second) produces strange artifacts where columns of solvent appear cut out
from the box—it probably means that after rotation the information for the periodic boundaries is not correct
any more.

Most kwargs are passed to both invocations of gromacs.tools.Trjconv so it does not really make sense
to use eg skip; in this case do things manually.

By default the input to the fit command is (‘backbone’, ‘protein’,’system’); the compact command always uses
the second and third group for its purposes or if this fails, prompts the user.

Both steps cannot performed in one pass; this is a known limitation of trjconv. An intermediate temporary
XTC files is generated which should be automatically cleaned up unless bad things happened.

The function tries to honour the input/output formats. For instance, if you want trr output you need to supply a
trr file as input and explicitly give the output file also a trr suffix.

Note: For big trajectories it can take a very long time and consume a large amount of temporary diskspace.

We follow the g_spatial documentation in preparing the trajectories:

trjconv -s a.tpr -f a.xtc -o b.xtc -center tric -ur compact -pbc none
trjconv -s a.tpr -f b.xtc -o c.xtc -fit rot+trans

cat(prefix=’md’, dirname=’.’, partsdir=’parts’, fulldir=’full’, resolve_multi=’pass’)
Concatenate all parts of a simulation.

The xtc, trr, and edr files in dirname such as prefix.xtc, prefix.part0002.xtc, prefix.part0003.xtc, ... are

1.moved to the partsdir (under dirname)

1.3. Gromacs package 131

http://oldwiki.gromacs.org/index.php/Manual:g_spatial_4.0.3

GromacsWrapper Documentation, Release 0.1.12

2.concatenated with the Gromacs tools to yield prefix.xtc, prefix.trr, prefix.edr, prefix.gro (or prefix.md) in
dirname

3.Store these trajectories in fulldir

Note: Trajectory files are never deleted by this function to avoid data loss in case of bugs. You will have to
clean up yourself by deleting dirname/partsdir.

Symlinks for the trajectories are not handled well and break the function. Use hard links instead.

Warning: If an exception occurs when running this function then make doubly and triply sure where your
files are before running this function again; otherwise you might overwrite data. Possibly you will need to
manually move the files from partsdir back into the working directory dirname; this should onlu overwrite
generated files so far but check carefully!

Keywords

prefix deffnm of the trajectories [md]

*resolve_multi” how to deal with multiple “final” gro or pdb files: normally there should only
be one but in case of restarting from the checkpoint of a finished simulation one can end up
with multiple identical ones.

• “pass” : do nothing and log a warning

• “guess” [take prefix.pdb or prefix.gro if it exists, otherwise the one of] pre-
fix.partNNNN.gro|pdb with the highes NNNN

dirname change to dirname and assume all tarjectories are located there [.]

partsdir directory where to store the input files (they are moved out of the way); partsdir must
be manually deleted [parts]

fulldir directory where to store the final results [full]

class Frames(structure, trj, maxframes=None, format=’pdb’, **kwargs)
A iterator that transparently provides frames from a trajectory.

The iterator chops a trajectory into individual frames for analysis tools that only work on separate structures
such as gro or pdb files. Instead of turning the whole trajectory immediately into pdb files (and potentially
filling the disk), the iterator can be instructed to only provide a fixed number of frames and compute more frames
when needed.

Note: Setting a limit on the number of frames on disk can lead to longish waiting times because trjconv
must re-seek to the middle of the trajectory and the only way it can do this at the moment is by reading frames
sequentially. This might still be preferrable to filling up a disk, though.

Warning: The maxframes option is not implemented yet; use the dt option or similar to keep the number
of frames manageable.

Set up the Frames iterator.

Arguments

structure name of a structure file (tpr, pdb, ...)

trj name of the trajectory (xtc, trr, ...)

format output format for the frames, eg “pdb” or “gro” [pdb]

maxframes [int] maximum number of frames that are extracted to disk at one time; set to None
to extract the whole trajectory at once. [None]

132 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

kwargs All other arguments are passed to class:~gromacs.tools.Trjconv; the only options that
cannot be changed are sep and the output file name o.

all_frames
Unordered list of all frames currently held on disk.

cleanup()
Clean up all temporary frames (which can be HUGE).

delete_frames()
Delete all frames.

extract()
Extract frames from the trajectory to the temporary directory.

class Transformer(s=’topol.tpr’, f=’traj.xtc’, n=None, force=None, dirname=’.’)
Class to handle transformations of trajectories.

1.Center, compact, and fit to reference structure in tpr (optionally, only center in the xy plane):
center_fit()

2.Write compact xtc and tpr with water removed: strip_water()

3.Write compact xtc and tpr only with protein: keep_protein_only()

Set up Transformer with structure and trajectory.

Supply n = tpr, f = xtc (and n = ndx) relative to dirname.

Keywords

s tpr file (or similar); note that this should not contain position restraints if it is to be used with
a reduced system (see strip_water())

f trajectory (xtc, trr, ...)

n index file (it is typically safe to leave this as None; in cases where a trajectory needs to be
centered on non-standard groups this should contain those groups)

force

Set the default behaviour for handling existing files:

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

center_fit(**kwargs)
Write compact xtc that is fitted to the tpr reference structure.

See :func:gromacs.cbook.trj_fitandcenter‘ for details and description of kwargs. The most important ones
are listed here but in most cases the defaults should work.

Keywords

s Input structure (typically the default tpr file but can be set to some other file with a different
conformation for fitting)

n Alternative index file.

o Name of the output trajectory.

xy [Boolean] If True then only fit in xy-plane (useful for a membrane normal to z). The
default is False.

1.3. Gromacs package 133

GromacsWrapper Documentation, Release 0.1.12

force

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

Returns dictionary with keys tpr, xtc, which are the names of the the new files

fit(xy=False, **kwargs)
Write xtc that is fitted to the tpr reference structure.

See gromacs.cbook.trj_xyfitted() for details and description of kwargs. The most important
ones are listed here but in most cases the defaults should work.

Keywords

s Input structure (typically the default tpr file but can be set to some other file with a
different conformation for fitting)

n Alternative index file.

o Name of the output trajectory. A default name is created. If e.g. dt = 100 is one of
the kwargs then the default name includes “_dt100ps”.

xy [boolean] If True then only do a rot+trans fit in the xy plane (good for membrane simu-
lations); default is False.

force True: overwrite existing trajectories False: throw a IOError exception None: skip
existing and log a warning [default]

kwargs kwargs are passed to trj_xyfitted()

Returns dictionary with keys tpr, xtc, which are the names of the the new files

keep_protein_only(os=None, o=None, on=None, compact=False, groupname=’proteinonly’, **kwargs)
Write xtc and tpr only containing the protein.

Keywords

os Name of the output tpr file; by default use the original but insert “proteinonly” before
suffix.

o Name of the output trajectory; by default use the original name but insert “proteinonly”
before suffix.

on Name of a new index file.

compact True: write a compact and centered trajectory False: use trajectory as it is
[False]

groupname Name of the protein-only group.

keepalso List of literal make_ndx selections of additional groups that should be kept, e.g.
[’resname DRUG’, ‘atom 6789’].

force [Boolean]

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

134 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

kwargs are passed on to gromacs.cbook.trj_compact() (unless the values have to
be set to certain values such as s, f, n, o keywords). The input keyword is always mangled:
Only the first entry (the group to centre the trajectory on) is kept, and as a second group
(the output group) groupname is used.

Returns dictionary with keys tpr, xtc, ndx which are the names of the the new files

Warning: The input tpr file should not have any position restraints; otherwise Gromacs will throw a
hissy-fit and say
Software inconsistency error: Position restraint coordinates are missing
(This appears to be a bug in Gromacs 4.x.)

rp(*args)
Return canonical path to file under dirname with components args

If args form an absolute path then just return it as the absolute path.

strip_water(os=None, o=None, on=None, compact=False, resn=’SOL’, groupname=’notwater’, **kwargs)
Write xtc and tpr with water (by resname) removed.

Keywords

os Name of the output tpr file; by default use the original but insert “nowater” before suffix.

o Name of the output trajectory; by default use the original name but insert “nowater” before
suffix.

on Name of a new index file (without water).

compact True: write a compact and centered trajectory False: use trajectory as it is
[False]

resn Residue name of the water molecules; all these residues are excluded.

groupname Name of the group that is generated by subtracting all waters from the system.

force [Boolean]

• True: overwrite existing trajectories

• False: throw a IOError exception

• None: skip existing and log a warning [default]

kwargs are passed on to gromacs.cbook.trj_compact() (unless the values have to
be set to certain values such as s, f, n, o keywords). The input keyword is always mangled:
Only the first entry (the group to centre the trajectory on) is kept, and as a second group
(the output group) groupname is used.

Returns dictionary with keys tpr, xtc, ndx which are the names of the the new files

Warning: The input tpr file should not have any position restraints; otherwise Gromacs will throw a
hissy-fit and say
Software inconsistency error: Position restraint coordinates are missing
(This appears to be a bug in Gromacs 4.x.)

get_volume(f)
Return the volume in nm^3 of structure file f.

(Uses gromacs.editconf(); error handling is not good)

1.3. Gromacs package 135

GromacsWrapper Documentation, Release 0.1.12

Processing output

There are cases when a script has to to do different things depending on the output from a Gromacs tool.

For instance, a common case is to check the total charge after grompping a tpr file. The grompp_qtot function does
just that.

grompp_qtot(*args, **kwargs)
Run gromacs.grompp and return the total charge of the system.

Arguments The arguments are the ones one would pass to gromacs.grompp().

Returns The total charge as reported

Some things to keep in mind:

•The stdout output of grompp is not shown. This can make debugging pretty hard. Try running the normal
gromacs.grompp() command and analyze the output if the debugging messages are not sufficient.

•Check that qtot is correct; because the function is based on pattern matching of the output it can break
when the output format changes.

get_volume(f)
Return the volume in nm^3 of structure file f.

(Uses gromacs.editconf(); error handling is not good)

parse_ndxlist(output)
Parse output from make_ndx to build list of index groups:

groups = parse_ndxlist(output)

output should be the standard output from make_ndx, e.g.:

rc,output,junk = gromacs.make_ndx(..., input=(’’, ’q’), stdout=False, stderr=True)

(or simply use

rc,output,junk = cbook.make_ndx_captured(...)

which presets input, stdout and stderr; of course input can be overriden.)

Returns The function returns a list of dicts (groups) with fields

name name of the groups

nr number of the group (starts at 0)

natoms number of atoms in the group

Working with topologies and mdp files

create_portable_topology(topol, struct, **kwargs)
Create a processed topology.

The processed (or portable) topology file does not contain any #include statements and hence can be easily
copied around. It also makes it possible to re-grompp without having any special itp files available.

Arguments

topol topology file

struct coordinat (structure) file

136 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

Keywords

processed name of the new topology file; if not set then it is named like topol but with pp_
prepended

includes path or list of paths of directories in which itp files are searched for

Returns full path to the processed trajectory

edit_mdp(mdp, new_mdp=None, extend_parameters=None, **substitutions)
Change values in a Gromacs mdp file.

Parameters and values are supplied as substitutions, eg nsteps=1000.

By default the template mdp file is overwritten in place.

If a parameter does not exist in the template then it cannot be substituted and the parameter/value pair is returned.
The user has to check the returned list in order to make sure that everything worked as expected. At the moment
it is not possible to automatically append the new values to the mdp file because of ambiguities when having to
replace dashes in parameter names with underscores (see the notes below on dashes/underscores).

If a parameter is set to the value None then it will be ignored.

Arguments

mdp [filename] filename of input (and output filename of new_mdp=None)

new_mdp [filename] filename of alternative output mdp file [None]

extend_parameters [string or list of strings] single parameter or list of parameters for which
the new values should be appended to the existing value in the mdp file. This makes mostly
sense for a single parameter, namely ‘include’, which is set as the default. Set to [] to
disable. [’include’]

substitutions parameter=value pairs, where parameter is defined by the Gromacs mdp file;
dashes in parameter names have to be replaced by underscores.

Returns Dict of parameters that have not been substituted.

Example

edit_mdp(’md.mdp’, new_mdp=’long_md.mdp’, nsteps=100000, nstxtcout=1000, lincs_iter=2)

Note:

•Dashes in Gromacs mdp parameters have to be replaced by an underscore when supplied as python key-
word arguments (a limitation of python). For example the MDP syntax is lincs-iter = 4 but the
corresponding keyword would be lincs_iter = 4.

•If the keyword is set as a dict key, eg mdp_params[’lincs-iter’]=4 then one does not have to
substitute.

•Parameters aa_bb and aa-bb are considered the same (although this should not be a problem in practice
because there are no mdp parameters that only differ by a underscore).

•This code is more compact in Perl as one can use s/// operators:
s/^(\s*${key}\s*=\s*).*/$1${val}/

See Also:

One can also load the mdp file with gromacs.formats.MDP, edit the object (a dict), and save it again.

add_mdp_includes(topology=None, kwargs=None)
Set the mdp include key in the kwargs dict.

1.3. Gromacs package 137

GromacsWrapper Documentation, Release 0.1.12

1.Add the directory containing topology.

2.Add all directories appearing under the key includes

3.Generate a string of the form “-Idir1 -Idir2 ...” that is stored under the key include (the corresponding mdp
parameter)

By default, the directories . and .. are also added to the include string for the mdp; when fed into
gromacs.cbook.edit_mdp() it will result in a line such as

include = -I. -I.. -I../topology_dir

Note that the user can always override the behaviour by setting the include keyword herself; in this case this
function does nothing.

If no kwargs were supplied then a dict is generated with the single include entry.

Arguments

topology [top filename] Topology file; the name of the enclosing directory is added to the in-
clude path (if supplied) [None]

kwargs [dict] Optional dictionary of mdp keywords; will be modified in place. If it contains the
includes keyword with either a single string or a list of strings then these paths will be added
to the include statement.

Returns kwargs with the include keyword added if it did not exist previously; if the keyword already
existed, nothing happens.

Note: The kwargs dict is modified in place. This function is a bit of a hack. It might be removed once all setup
functions become methods in a nice class.

grompp_qtot(*args, **kwargs)
Run gromacs.grompp and return the total charge of the system.

Arguments The arguments are the ones one would pass to gromacs.grompp().

Returns The total charge as reported

Some things to keep in mind:

•The stdout output of grompp is not shown. This can make debugging pretty hard. Try running the normal
gromacs.grompp() command and analyze the output if the debugging messages are not sufficient.

•Check that qtot is correct; because the function is based on pattern matching of the output it can break
when the output format changes.

Working with index files

Manipulation of index files (ndx) can be cumbersome because the make_ndx program is not very sophisticated (yet)
compared to full-fledged atom selection expression as available in Charmm, VMD, or MDAnalysis. Some tools help
in building and interpreting index files.

See Also:

The gromacs.formats.NDX class can solve a number of index problems in a cleaner way than the classes and
functions here.

class IndexBuilder(struct=None, selections=None, names=None, name_all=None, ndx=None,
out_ndx=’selection.ndx’, offset=0)

Build an index file with specified groups and the combined group.

138 Chapter 1. Contents

http://www.charmm.org/html/documentation/c35b1/select.html
http://www.ks.uiuc.edu/Research/vmd/current/ug/node87.html
http://mdanalysis.googlecode.com

GromacsWrapper Documentation, Release 0.1.12

This is not a full blown selection parser a la Charmm, VMD or MDAnalysis but a very quick hack.

Example

How to use the IndexBuilder:

G = gromacs.cbook.IndexBuilder(’md_posres.pdb’,
[’S312:OG’,’T313:OG1’,’A38:O’,’A309:O’,’@a62549 & r NA’],
offset=-9, out_ndx=’selection.ndx’)

groupname, ndx = G.combine()
del G

The residue numbers are given with their canonical resids from the sequence or pdb. offset=-9 says
that one calculates Gromacs topology resids by subtracting 9 from the canonical resid.

The combined selection is OR ed by default and written to selection.ndx. One can also add all the
groups in the initial ndx file (or the make_ndx default groups) to the output (see the defaultgroups
keyword for IndexBuilder.combine()).

Generating an index file always requires calling combine() even if there is only a single group.

Deleting the class removes all temporary files associated with it (see
IndexBuilder.indexfiles).

Raises If an empty group is detected (which does not always work) then a
gromacs.BadParameterWarning is issued.

Bugs If make_ndx crashes with an unexpected error then this is fairly hard to diagnose. For in-
stance, in certain cases it segmentation faults when a tpr is provided as a struct file and the
resulting error messages becomes

GromacsError: [Errno -11] Gromacs tool failed
Command invocation: make_ndx -o /tmp/tmp_Na1__NK7cT3.ndx -f md_posres.tpr

In this case run the command invocation manually to see what the problem could be.

See Also:

In some cases it might be more straightforward to use gromacs.formats.NDX.

Build a index group from the selection arguments.

If selections and a structure file are supplied then the individual selections are constructed with separate calls to
gromacs.make_ndx(). Use IndexBuilder.combine() to combine them into a joint selection.

Arguments

struct [filename] Structure file (tpr, pdb, ...)

selections [list] The list must contain strings or tuples, which must be be one of the following
constructs:

“<1-letter aa code><resid>[:<atom name]”

Selects the CA of the residue or the specified atom name.

example: "S312:OA" or "A22" (equivalent to "A22:CA")

(“<1-letter aa code><resid>”, “<1-letter aa code><resid>, [”<atom name>”])

Selects a range of residues. If only two residue identifiers are provided then all
atoms are selected. With an optional third atom identifier, only this atom anme is
selected for each residue in the range. [EXPERIMENTAL]

1.3. Gromacs package 139

GromacsWrapper Documentation, Release 0.1.12

“@<make_ndx selection>”

The @ letter introduces a verbatim make_ndx command. It will apply the given
selection without any further processing or checks.

example: "@a 6234 - 6238" or ’@"SOL"’ (note the quoting) or "@r SER
& r 312 & t OA".

names [list] Strings to name the selections; if not supplied or if individuals are None then a
default name is created.

offset [int, dict] This number is added to the resids in the first selection scheme; this allows
names to be the same as in a crystal structure. If offset is a dict then it is used to directly
look up the resids.

ndx [filename or list of filenames] Optional input index file(s).

out_ndx [filename] Output index file.

combine(name_all=None, out_ndx=None, operation=’|’, defaultgroups=False)
Combine individual groups into a single one and write output.

Keywords

name_all [string] Name of the combined group, None generates a name. [None]

out_ndx [filename] Name of the output file that will contain the individual groups and the
combined group. If None then default from the class constructor is used. [None]

operation [character] Logical operation that is used to generate the combined group from
the individual groups: “|” (OR) or “&” (AND) [”|”]

defaultgroups [bool] True: append everything to the default groups produced by
make_ndx (or rather, the groups provided in the ndx file on initialization — if this was
None then these are truly default groups); False: only use the generated groups

Returns (combinedgroup_name, output_ndx), a tuple showing the actual group
name and the name of the file; useful when all names are autogenerated.

Warning: The order of the atom numbers in the combined group is not guaranteed to be the same as
the selections on input because make_ndx sorts them ascending. Thus you should be careful when
using these index files for calculations of angles and dihedrals. Use gromacs.formats.NDX in
these cases.

gmx_resid(resid)
Returns resid in the Gromacs index by transforming with offset.

parse_ndxlist(output)
Parse output from make_ndx to build list of index groups:

groups = parse_ndxlist(output)

output should be the standard output from make_ndx, e.g.:

rc,output,junk = gromacs.make_ndx(..., input=(’’, ’q’), stdout=False, stderr=True)

(or simply use

rc,output,junk = cbook.make_ndx_captured(...)

which presets input, stdout and stderr; of course input can be overriden.)

Returns The function returns a list of dicts (groups) with fields

140 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

name name of the groups

nr number of the group (starts at 0)

natoms number of atoms in the group

get_ndx_groups(ndx, **kwargs)
Return a list of index groups in the index file ndx.

Arguments

• ndx is a Gromacs index file.

• kwargs are passed to make_ndx_captured().

Returns list of groups as supplied by parse_ndxlist()

Alternatively, load the index file with gromacs.formats.NDX for full control.

make_ndx_captured(**kwargs)
make_ndx that captures all output

Standard make_ndx() command with the input and output pre-set in such a way that it can be conveniently
used for parse_ndxlist().

Example:: ndx_groups = parse_ndxlist(make_ndx_captured(n=ndx)[0])

Note that the convenient get_ndx_groups() function does exactly that and can probably used in most cases.

Arguments keywords are passed on to make_ndx()

Returns (returncode, output, None)

File editing functions

It is often rather useful to be able to change parts of a template file. For specialized cases the two following functions
are useful:

edit_mdp(mdp, new_mdp=None, extend_parameters=None, **substitutions)
Change values in a Gromacs mdp file.

Parameters and values are supplied as substitutions, eg nsteps=1000.

By default the template mdp file is overwritten in place.

If a parameter does not exist in the template then it cannot be substituted and the parameter/value pair is returned.
The user has to check the returned list in order to make sure that everything worked as expected. At the moment
it is not possible to automatically append the new values to the mdp file because of ambiguities when having to
replace dashes in parameter names with underscores (see the notes below on dashes/underscores).

If a parameter is set to the value None then it will be ignored.

Arguments

mdp [filename] filename of input (and output filename of new_mdp=None)

new_mdp [filename] filename of alternative output mdp file [None]

extend_parameters [string or list of strings] single parameter or list of parameters for which
the new values should be appended to the existing value in the mdp file. This makes mostly
sense for a single parameter, namely ‘include’, which is set as the default. Set to [] to
disable. [’include’]

substitutions parameter=value pairs, where parameter is defined by the Gromacs mdp file;
dashes in parameter names have to be replaced by underscores.

1.3. Gromacs package 141

GromacsWrapper Documentation, Release 0.1.12

Returns Dict of parameters that have not been substituted.

Example

edit_mdp(’md.mdp’, new_mdp=’long_md.mdp’, nsteps=100000, nstxtcout=1000, lincs_iter=2)

Note:

•Dashes in Gromacs mdp parameters have to be replaced by an underscore when supplied as python key-
word arguments (a limitation of python). For example the MDP syntax is lincs-iter = 4 but the
corresponding keyword would be lincs_iter = 4.

•If the keyword is set as a dict key, eg mdp_params[’lincs-iter’]=4 then one does not have to
substitute.

•Parameters aa_bb and aa-bb are considered the same (although this should not be a problem in practice
because there are no mdp parameters that only differ by a underscore).

•This code is more compact in Perl as one can use s/// operators:
s/^(\s*${key}\s*=\s*).*/$1${val}/

See Also:

One can also load the mdp file with gromacs.formats.MDP, edit the object (a dict), and save it again.

edit_txt(filename, substitutions, newname=None)
Primitive text file stream editor.

This function can be used to edit free-form text files such as the topology file. By default it does an in-place
edit of filename. If newname is supplied then the edited file is written to newname.

Arguments

filename input text file

substitutions substitution commands (see below for format)

newname output filename; if None then filename is changed in place [None]

substitutions is a list of triplets; the first two elements are regular expression strings, the last is the substitution
value. It mimics sed search and replace. The rules for substitutions:

substitutions ::= “[” search_replace_tuple, ... “]”
search_replace_tuple ::= “(” line_match_RE “,” search_RE “,” replacement “)”
line_match_RE ::= regular expression that selects the line (uses match)
search_RE ::= regular expression that is searched in the line
replacement ::= replacement string for search_RE

Running edit_txt() does pretty much what a simple

sed /line_match_RE/s/search_RE/replacement/

with repeated substitution commands does.

Special replacement values: - None: the rule is ignored - False: the line is deleted (even if other rules match)

Note:

•No sanity checks are performed and the substitutions must be supplied exactly as shown.

•All substitutions are applied to a line; thus the order of the substitution commands may matter when one
substitution generates a match for a subsequent rule.

142 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

•If replacement is set to None then the whole expression is ignored and whatever is in the template is used.
To unset values you must provided an empty string or similar.

•Delete a matching line if replacement=‘‘False‘‘.

gromacs.setup – Setting up a Gromacs MD run

Individual steps such as solvating a structure or energy minimization are set up in individual directories. For energy
minimization one should supply appropriate mdp run input files; otherwise example templates are used.

Warning: You must check all simulation parameters for yourself. Do not rely on any defaults provided here.
The scripts provided here are provided under the assumption that you know what you are doing and you just want
to automate the boring parts of the process.

User functions

The individual steps of setting up a simple MD simulation are broken down in a sequence of functions that depend on
the previous step(s):

topology() generate initial topology file (limited functionality, might require manual setup)

solvate() solvate globular protein and add ions to neutralize

energy_minimize() set up energy minimization and run it (using mdrun_d)

em_schedule() set up and run multiple energy minimizations one after another (as an alternative to
the simple single energy minimization provided by energy_minimize())

MD_restrained() set up restrained MD

MD() set up equilibrium MD

Each function uses its own working directory (set with the dirname keyword argument, but it should be safe and
convenient to use the defaults). Other arguments assume the default locations so typically not much should have to be
set manually.

One can supply non-standard itp files in the topology directory. In some cases one does not use the topology()
function at all but sets up the topology manually. In this case it is safest to call the topology directory top and make
sure that it contains all relevant top, itp, and pdb files.

Example

Run a single protein in a dodecahedral box of SPC water molecules and use the GROMOS96 G43a1 force field. We
start with the structure in protein.pdb:

from gromacs.setup import *
f1 = topology(protein=’MyProtein’, struct=’protein.pdb’, ff=’G43a1’, water=’spc’, force=True, ignh=True)

Each function returns “interesting” new files in a dictionary in such a away that it can often be used as input for the
next function in the chain (although in most cases one can get away with the defaults of the keyword arguments):

f2 = solvate(**f1)
f3 = energy_minimize(**f2)

Now prepare input for a MD run with restraints on the protein:

1.3. Gromacs package 143

GromacsWrapper Documentation, Release 0.1.12

MD_restrained(**f3)

Use the files in the directory to run the simulation locally or on a cluster. You can provide your own template for a
queuing system submission script; see the source code for details.

Once the restraint run has completed, use the last frame as input for the equilibrium MD:

MD(struct=’MD_POSRES/md.gro’, runtime=1e5)

Run the resulting tpr file on a cluster.

User functions

The following functions are provided for the user:

topology(struct=None, protein=’protein’, top=’system.top’, dirname=’top’, **pdb2gmx_args)
Build Gromacs topology files from pdb.

Keywords

struct input structure (required)

protein name of the output files

top name of the topology file

dirname directory in which the new topology will be stored

pdb2gmxargs arguments for pdb2gmx such as ff, water, ...

Note: At the moment this function simply runs pdb2gmx and uses the resulting topology file directly. If you
want to create more complicated topologies and maybe also use additional itp files or make a protein itp file then
you will have to do this manually.

solvate(struct=’top/protein.pdb’, top=’top/system.top’, distance=0.90000000000000002, box-
type=’dodecahedron’, concentration=0, cation=’NA+’, anion=’CL-’, water=’spc’,
with_membrane=False, ndx=’main.ndx’, mainselection=’"Protein"’, dirname=’solvate’, **kwargs)

Put protein into box, add water, add counter-ions.

Currently this really only supports solutes in water. If you need to embedd a protein in a membrane then you
will require more sophisticated approaches.

However, you can supply a protein already inserted in a bilayer. In this case you will probably want to set
distance = None and also enable with_membrane = True (using extra big vdw radii for typical lipids).

Arguments

struct [filename] pdb or gro input structure

top [filename] Gromacs topology

distance [float] When solvating with water, make the box big enough so that at least distance
nm water are between the solute struct and the box boundary. Set this to None in order to
use a box size in the input file (gro or pdb).

boxtype [string] Any of the box types supported by Genbox. If set to None it will also ignore
distance and use the box inside the struct file.

concentration [float] Concentration of the free ions in mol/l. Note that counter ions are added
in excess of this concentration.

cation and anion [string] Molecule names of the ions. This depends on the chosen force field.

144 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

water [string] Name of the water model; one of “spc”, “spce”, “tip3p”, “tip4p”. This should be
appropriate for the chosen force field. If no water is requird, simply supply the path to a box
with solvent molecules (used by gromacs.genbox()‘s cs argument).

with_membrane [bool] True: use special vdwradii.dat with 0.1 nm-increased radii on
lipids. Default is False.

ndx [filename] The name of the custom index file that is produced here.

mainselection [string] A string that is fed to Make_ndx and which should select the solute.

dirname [directory name] Name of the directory in which all files for the solvation stage are
stored.

includes : list of additional directories to add to the mdp include path

Note: non-water solvents only work if the molecules are named SOL.

energy_minimize(dirname=’em’, mdp=’/sansom/gfio/oliver/Library/python/GromacsWrapper/gromacs/templates/em.mdp’,
struct=’solvate/ionized.gro’, top=’top/system.top’, output=’em.pdb’, deffnm=’em’, mdrun-
ner=None, **kwargs)

Energy minimize the system.

This sets up the system (creates run input files) and also runs mdrun_d. Thus it can take a while.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values.

Keywords

dirname set up under directory dirname [em]

struct input structure (gro, pdb, ...) [solvate/ionized.gro]

output output structure (will be put under dirname) [em.pdb]

deffnm default name for mdrun-related files [em]

top topology file [top/system.top]

mdp mdp file (or use the template) [templates/em.mdp]

includes additional directories to search for itp files

mdrunner gromacs.run.MDrunner class; by defauly we just try gromacs.mdrun_d()
and gromacs.mdrun() but a MDrunner class gives the user the ability to run mpi jobs
etc. [None]

kwargs remaining key/value pairs that should be changed in the template mdp file, eg
nstxtcout=250, nstfout=250.

Note: If mdrun_d() is not found, the function falls back to mdrun() instead.

em_schedule(**kwargs)
Run multiple energy minimizations one after each other.

Keywords

integrators list of integrators (from ‘l-bfgs’, ‘cg’, ‘steep’) [[’bfgs’, ‘steep’]]

nsteps list of maximum number of steps; one for each integrator in in the integrators list
[[100,1000]]

kwargs mostly passed to gromacs.setup.energy_minimize()

Returns dictionary with paths to final structure (‘struct’) and other files

1.3. Gromacs package 145

GromacsWrapper Documentation, Release 0.1.12

Example

Conduct three minimizations:

1. low memory Broyden-Goldfarb-Fletcher-Shannon (BFGS) for 30 steps

2. steepest descent for 200 steps

3. finish with BFGS for another 30 steps

We also do a multi-processor minimization when possible (i.e. for steep (and conjugate gradient)
by using a gromacs.run.MDrunner class for a mdrun executable compiled for OpenMP
in 64 bit (see gromacs.run for details):

import gromacs.run
gromacs.setup.em_schedule(struct=’solvate/ionized.gro’,

mdrunner=gromacs.run.MDrunnerOpenMP64,
integrators=[’l-bfgs’, ’steep’, ’l-bfgs’],
nsteps=[50,200, 50])

Note: You might have to prepare the mdp file carefully because at the moment one can only modify the nsteps
parameter on a per-minimizer basis.

MD_restrained(dirname=’MD_POSRES’, **kwargs)
Set up MD with position restraints.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values. Note that setting mainselection = None
will disable many of the automated choices and is often recommended when using your own mdp file.

Keywords

dirname set up under directory dirname [MD_POSRES]

struct input structure (gro, pdb, ...) [em/em.pdb]

top topology file [top/system.top]

mdp mdp file (or use the template) [templates/md.mdp]

ndx index file (supply when using a custom mdp)

includes additional directories to search for itp files

mainselection make_ndx selection to select main group [”Protein”] (If None then no canonical
index file is generated and it is the user’s responsibility to set tc_grps, tau_t, and ref_t as
keyword arguments, or provide the mdp template with all parameter pre-set in mdp and
probably also your own ndx index file.)

deffnm default filename for Gromacs run [md]

runtime total length of the simulation in ps [1000]

dt integration time step in ps [0.002]

qscript script to submit to the queuing system; by default uses the template
gromacs.config.qscript_template, which can be manually set to another
template from gromacs.config.templates; can also be a list of template names.

qname name to be used for the job in the queuing system [PR_GMX]

mdrun_opts option flags for the mdrun command in the queuing system scripts such as “-
stepout 100”. [”“]

146 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

kwargs remaining key/value pairs that should be changed in the template mdp file, eg
nstxtcout=250, nstfout=250 or command line options for grompp‘ such as
‘‘maxwarn=1.

In particular one can also set define and activate whichever position restraints have been
coded into the itp and top file. For instance one could have

define = “-DPOSRES_MainChain -DPOSRES_LIGAND”

if these preprocessor constructs exist. Note that there must not be any space between “-D”
and the value.

By default define is set to “-DPOSRES”.

Returns a dict that can be fed into gromacs.setup.MD() (but check, just in case, especially if
you want to change the define parameter in the mdp file)

Note: The output frequency is drastically reduced for position restraint runs by default. Set the corresponding
nst* variables if you require more output.

MD(dirname=’MD’, **kwargs)
Set up equilibrium MD.

Additional itp files should be in the same directory as the top file.

Many of the keyword arguments below already have sensible values. Note that setting mainselection = None
will disable many of the automated choices and is often recommended when using your own mdp file.

Keywords

dirname set up under directory dirname [MD]

struct input structure (gro, pdb, ...) [MD_POSRES/md_posres.pdb]

top topology file [top/system.top]

mdp mdp file (or use the template) [templates/md.mdp]

ndx index file (supply when using a custom mdp)

includes additional directories to search for itp files

mainselection make_ndx selection to select main group [”Protein”] (If None then no canon-
ical index file is generated and it is the user’s responsibility to set tc_grps, tau_t, and ref_t
as keyword arguments, or provide the mdp template with all parameter pre-set in mdp and
probably also your own ndx index file.)

deffnm default filename for Gromacs run [md]

runtime total length of the simulation in ps [1000]

dt integration time step in ps [0.002]

qscript script to submit to the queuing system; by default uses the template
gromacs.config.qscript_template, which can be manually set to another
template from gromacs.config.templates; can also be a list of template names.

qname name to be used for the job in the queuing system [MD_GMX]

mdrun_opts option flags for the mdrun command in the queuing system scripts such as “-
stepout 100 -dgdl”. [”“]

kwargs remaining key/value pairs that should be changed in the template mdp file, e.g.
nstxtcout=250, nstfout=250 or command line options for :program‘grompp‘
such as maxwarn=1.

1.3. Gromacs package 147

GromacsWrapper Documentation, Release 0.1.12

Returns a dict that can be fed into gromacs.setup.MD() (but check, just in case, especially if
you want to change the define parameter in the mdp file)

Helper functions

The following functions are used under the hood and are mainly useful when writing extensions to the module.

make_main_index(struct, selection=’"Protein"’, ndx=’main.ndx’, oldndx=None)
Make index file with the special groups.

This routine adds the group __main__ and the group __environment__ to the end of the index file. __main__
contains what the user defines as the central and most important parts of the system. __environment__ is
everything else.

The template mdp file, for instance, uses these two groups for T-coupling.

These groups are mainly useful if the default groups “Protein” and “Non-Protein” are not appropriate. By using
symbolic names such as __main__ one can keep scripts more general.

Returns groups is a list of dictionaries that describe the index groups. See
gromacs.cbook.parse_ndxlist() for details.

Arguments

struct [filename] structure (tpr, pdb, gro)

selection [string] is a make_ndx command such as "Protein" or r DRG which determines
what is considered the main group for centering etc. It is passed directly to make_ndx.

ndx [string] name of the final index file

oldndx [string] name of index file that should be used as a basis; if None then the make_ndx
default groups are used.

This routine is very dumb at the moment; maybe some heuristics will be added later as could be other symbolic
groups such as __membrane__.

check_mdpargs(d)
Check if any arguments remain in dict d.

get_lipid_vdwradii(outdir=’.’, libdir=None)
Find vdwradii.dat and add special entries for lipids.

See gromacs.setup.vdw_lipid_resnames for lipid resnames. Add more if necessary.

_setup_MD(dirname, deffnm=’md’, mdp=’/sansom/gfio/oliver/Library/python/GromacsWrapper/gromacs/templates/md_OPLSAA.mdp’,
struct=None, top=’top/system.top’, ndx=None, mainselection=’"Protein"’,
qscript=’/sansom/gfio/oliver/Library/python/GromacsWrapper/gromacs/templates/local.sh’,
qname=None, mdrun_opts=”, budget=None, walltime=0.33333333333333331, dt=0.002, run-
time=1000.0, **mdp_kwargs)

Generic function to set up a mdrun MD simulation.

See the user functions for usage.

Defined constants:

CONC_WATER
Concentration of water at standard conditions in mol/L. Density at 25 degrees C and 1 atmosphere pressure: rho
= 997.0480 g/L. Molecular weight: M = 18.015 g/mol. c = n/V = m/(V*M) = rho/M = 55.345 mol/L.

148 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

vdw_lipid_resnames
Hard-coded lipid residue names for a vdwradii.dat file. Use together with vdw_lipid_atom_radii
in get_lipid_vdwradii().

vdw_lipid_atom_radii
Increased atom radii for lipid atoms; these are simply the standard values from GMXLIB/vdwradii.dat
increased by 0.1 nm (C) or 0.05 nm (N, O, H).

gromacs.qsub – utilities for batch submission systems

The module helps writing submission scripts for various batch submission queuing systems. The known ones are listed
stored as QueuingSystem instances in queuing_systems; append new ones to this list.

The working paradigm is that template scripts are provided (see gromacs.config.templates) and only a few
place holders are substituted (using gromacs.cbook.edit_txt()).

User-supplied template scripts can be stored in gromacs.config.qscriptdir (by default
~/.gromacswrapper/qscripts) and they will be picked up before the package-supplied ones.

The Manager handles setup and control of jobs in a queuing system on a remote system via ssh.

At the moment, some of the functions in gromacs.setup use this module but it is fairly independent and could
conceivably be used for a wider range of projects.

Queuing system templates

The queuing system scripts are highly specific and you will need to add your own. Templates should be shell scripts.
Some parts of the templates are modified by the generate_submit_scripts() function. The “place holders”
that can be replaced are shown in the table below. Typically, the place holders are either shell variable assignments
or batch submission system commands. The table shows SGE commands but PBS and LoadLeveler have similar
constructs; e.g. PBS commands start with #PBS and LoadLeveller uses #@ with its own command keywords).

Table 1.1: Substitutions in queuing system templates.

place holder default replacement description regex
#$ -N GMX_MD sgename job name /^#.*(-N|job_name)/
#$ -l walltime= 00:20:00 walltime max run time /^#.*(-l walltime|wall_clock_limit)/
#$ -A BUDGET budget account /^#.*(-A|account_no)/
DEFFNM= md deffnm default gmx name /^DEFFNM=/
WALL_HOURS= 0.33 walltime h mdrun’s -maxh /^WALL_HOURS=/
MDRUN_OPTS= “” mdrun_opts more options /^MDRUN_OPTS=/

Lines with place holders should not have any white space at the beginning. The regular expression pattern (“regex”)
is used to find the lines for the replacement and the literal default values (“default”) are replaced. Not all place holders
have to occur in a template; for instance, if a queue has no run time limitation then one would probably not include
walltime and WALL_HOURS place holders.

The line # JOB_ARRAY_PLACEHOLDER can be replaced by generate_submit_array() to produce a “job
array” (also known as a “task array”) script that runs a large number of related simulations under the control of a single
queuing system job. The individual array tasks are run from different sub directories. Only queuing system scripts that
are using the bash shell are supported for job arrays at the moment.

A queuing system script must have the appropriate suffix to be properly recognized, as shown in the table below.

1.3. Gromacs package 149

http://www.mcs.anl.gov/research/projects/openpbs/
http://www-03.ibm.com/systems/software/loadleveler/index.html

GromacsWrapper Documentation, Release 0.1.12

Table 1.2: Suffices for queuing system templates. Pure shell-scripts are
only used to run locally.

Queuing system suffix notes
Sun Gridengine .sge Sun’s Sun Gridengine
Portable Batch queuing system .pbs OpenPBS and PBS Pro
LoadLeveler .ll IBM’s LoadLeveler
bash script .bash, .sh Advanced bash scripting
csh script .csh avoid csh

Example queuing system script template for PBS The following script is a usable PBS script for a super computer.
It contains almost all of the replacement tokens listed in the table (indicated by ++++++; these values should be kept
in the template as they are or they will not be subject to replacement).

#!/bin/bash
File name: ~/.gromacswrapper/qscripts/supercomputer.somewhere.fr_64core.pbs
#PBS -N GMX_MD
++++++
#PBS -j oe
#PBS -l select=8:ncpus=8:mpiprocs=8
#PBS -l walltime=00:20:00
++++++++

host: supercomputer.somewhere.fr
queuing system: PBS

set this to the same value as walltime; mdrun will stop cleanly
at 0.99 * WALL_HOURS
WALL_HOURS=0.33
++++

deffnm line is possibly modified by gromacs.setup
(leave it as it is in the template)
DEFFNM=md
++

TPR=${DEFFNM}.tpr
OUTPUT=${DEFFNM}.out
PDB=${DEFFNM}.pdb

MDRUN_OPTS=""
++

If you always want to add additional MDRUN options in this script then
you can either do this directly in the mdrun commandline below or by
constructs such as the following:
MDRUN_OPTS="-npme 24 $MDRUN_OPTS"

JOB_ARRAY_PLACEHOLDER
#++++++++++++++++++++++ leave the full commented line intact!

avoids some failures
export MPI_GROUP_MAX=1024
use hard coded path for time being
GMXBIN="/opt/software/SGI/gromacs/4.0.3/bin"
MPIRUN=/usr/pbs/bin/mpiexec

150 Chapter 1. Contents

http://gridengine.sunsource.net/
http://www.mcs.anl.gov/research/projects/openpbs/
http://www.pbsworks.com/Product.aspx?id=1
http://www-03.ibm.com/systems/software/loadleveler/index.html
http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/CshTop10.txt
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://www.mcs.anl.gov/research/projects/openpbs/

GromacsWrapper Documentation, Release 0.1.12

APPLICATION=$GMXBIN/mdrun_mpi

$MPIRUN $APPLICATION -stepout 1000 -deffnm ${DEFFNM} -s ${TPR} -c ${PDB} -cpi $MDRUN_OPTS -maxh ${WALL_HOURS} > $OUTPUT
rc=$?

dependent jobs will only start if rc == 0
exit $rc

Save the above script in ~/.gromacswrapper/qscripts under the name
supercomputer.somewhere.fr_64core.pbs. This will make the script immediately usable. For ex-
ample, in order to set up a production MD run with gromacs.setup.MD() for this super computer one would
use

gromacs.setup.MD(..., qscripts=[’supercomputer.somewhere.fr_64core.pbs’, ’local.sh’])

This will generate submission scripts based on supercomputer.somewhere.fr_64core.pbs and also the
default local.sh that is provided with GromacsWrapper.

In order to modify MDRUN_OPTS one would use the additonal mdrun_opts argument, for instance:

gromacs.setup.MD(..., qscripts=[’supercomputer.somewhere.fr_64core.pbs’, ’local.sh’],
mdrun_opts="-v -npme 20 -dlb yes -nosum")

Currently there is no good way to specify the number of processors when creating run scripts. You will need to
provided scripts with different numbers of cores hard coded or set them when submitting the scripts with command
line options to qsub.

Classes and functions

class QueuingSystem(name, suffix, qsub_prefix, array_variable=None, array_option=None)
Class that represents minimum information about a batch submission system.

Define a queuing system’s functionality

Arguments

name name of the queuing system, e.g. ‘Sun Gridengine’

suffix suffix of input files, e.g. ‘sge’

qsub_prefix prefix string that starts a qsub flag in a script, e.g. ‘#$’

Keywords

array_variable environment variable exported for array jobs, e.g. ‘SGE_TASK_ID’

array_option qsub option format string to launch an array (e.g. ‘-t %d-%d’)

array(directories)
Return multiline string for simple array jobs over directories.

Warning: The string is in bash and hence the template must also be bash (and not csh or sh).

array_flag(directories)
Return string to embed the array launching option in the script.

flag(*args)
Return string for qsub flag args prefixed with appropriate inscript prefix.

1.3. Gromacs package 151

GromacsWrapper Documentation, Release 0.1.12

has_arrays()
True if known how to do job arrays.

isMine(scriptname)
Primitive queuing system detection; only looks at suffix at the moment.

generate_submit_scripts(templates, prefix=None, deffnm=’md’, jobname=’MD’, budget=None,
mdrun_opts=None, walltime=1.0, jobarray_string=None, **kwargs)

Write scripts for queuing systems.

This sets up queuing system run scripts with a simple search and replace in templates. See
gromacs.cbook.edit_txt() for details. Shell scripts are made executable.

Arguments

templates Template file or list of template files. The “files” can also be names or symbolic
names for templates in the templates directory. See gromacs.config for details and
rules for writing templates.

prefix Prefix for the final run script filename; by default the filename will be the same as the
template. [None]

dirname Directory in which to place the submit scripts. [.]

deffnm Default filename prefix for mdrun -deffnm [md]

jobname Name of the job in the queuing system. [MD]

budget Which budget to book the runtime on [None]

mdrun_opts String of additional options for mdrun.

walltime Maximum runtime of the job in hours. [1]

jobarray_string Multi-line string that is spliced in for job array functionality (see
gromacs.qsub.generate_submit_array(); do not use manually)

kwargs all other kwargs are ignored

Returns list of generated run scripts

generate_submit_array(templates, directories, **kwargs)
Generate a array job.

For each work_dir in directories, the array job will

1. cd into work_dir

2. run the job as detailed in the template

It will use all the queuing system directives found in the template. If more complicated set ups are required,
then this function cannot be used.

Arguments

templates Basic template for a single job; the job array logic is spliced into the position of the
line

JOB_ARRAY_PLACEHOLDER

The appropriate commands for common queuing systems (Sun Gridengine, PBS) are hard
coded here. The queuing system is detected from the suffix of the template.

directories List of directories under dirname. One task is set up for each directory.

152 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

dirname The array script will be placed in this directory. The directories must be located under
dirname.

kwargs See gromacs.setup.generate_submit_script() for details.

detect_queuing_system(scriptfile)
Return the queuing system for which scriptfile was written.

queuing_systems
Pre-defined queuing systems (SGE, PBS). Add your own here.

Queuing system Manager

The Manager class must be customized for each system such as a cluster or a super computer. It then allows
submission and control of jobs remotely (using ssh).

class Manager(dirname=’.’, **kwargs)
Base class to launch simulations remotely on computers with queuing systems.

Basically, ssh into machine and run job.

Derive a class from Manager and override the attributes

•Manager._hostname (hostname of the machine)

•Manager._scratchdir (all files and directories will be created under this scratch directory; it must
be a path on the remote host)

•Manager._qscript (the default queuing system script template)

•Manager._walltime (if there is a limit to the run time of a job; in hours)

and implement a specialized Manager.qsub() method if needed.

ssh must be set up (via ~/.ssh/config) to allow access via a commandline such as

ssh <hostname> <command> ...

Typically you want something such as

host <hostname>
hostname <hostname>.fqdn.org
user <remote_user>

in ~/.ssh/config and also set up public-key authentication in order to avoid typing your password all the
time.

Set up the manager.

Arguments

statedir directory component under the remote scratch dir (should be different for different jobs)
[basename(CWD)]

prefix identifier for job names [MD]

_hostname
hostname of the super computer (required)

_scratchdir
scratch dir on hostname (required)

1.3. Gromacs package 153

http://www.openssh.com/
http://www.openssh.com/
http://linux.die.net/man/5/ssh_config

GromacsWrapper Documentation, Release 0.1.12

_qscript
name of the template submission script appropriate for the queuing system on Manager._hostname;
can be a path to a local file or a template stored in gromacs.config.qscriptdir or a key for
gromacs.config.templates (required)

_walltime
maximum run time of script in hours; the queuing system script Manager._qscript is supposed to
stop mdrun after 99% of this time via the -maxh option. A value of None or inf indicates no limit.

job_done()
alias for get_status()

qstat()
alias for get_status()

cat(dirname, prefix=’md’, cleanup=True)
Concatenate parts of a run in dirname.

Always uses gromacs.cbook.cat() with resolve_multi = ‘guess’.

Note: The default is to immediately delete the original files (cleanup = True).

Keywords

dirname directory to work in

prefix prefix (deffnm) of the files [md]

cleanup [boolean] if True, remove all used files [True]

get(dirname, checkfile=None, targetdir=’.’)
scp -r dirname from host into targetdir

Arguments

• dirname: dir to download

• checkfile: raise OSError/ENOENT if targetdir/dirname/checkfile was not found

• targetdir: put dirname into this directory

Returns return code from scp

get_dir(*args)
Directory on the remote machine.

get_status(dirname, logfilename=’md*.log’, silent=False)
Check status of remote job by looking into the logfile.

Report on the status of the job and extracts the performance in ns/d if available (which is saved in
Manager.performance).

Arguments

• dirname

• logfilename can be a shell glob pattern [md*.log]

• silent = True/False; True suppresses log.info messages

Returns True is job is done, False if still running None if no log file found to look at

Note: Also returns False if the connection failed.

Warning: This is an important but somewhat fragile method. It needs to be improved to be more
robust.

154 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

local_get(dirname, checkfile, cattrajectories=True, cleanup=False)
Find checkfile locally if possible.

If checkfile is not found in dirname then it is transferred from the remote host.

If needed, the trajectories are concatenated using Manager.cat().

Returns local path of checkfile

log_RE
Regular expression used by Manager.get_status() to parse the logfile from mdrun.

ndependent(runtime, performance=None, walltime=None)
Calculate how many dependent (chained) jobs are required.

Uses performance in ns/d (gathered from get_status()) and job max walltime (in hours) from the
class unless provided as keywords.

n = ceil(runtime/(performance*0.99*walltime)

Keywords

runtime length of run in ns

performance ns/d with the given setup

walltime maximum run length of the script (using 99% of it), in h

Returns n or 1 if walltime is unlimited

put(dirname)
scp dirname to host.

Arguments dirname to be transferred

Returns return code from scp

putfile(filename, dirname)
scp filename to host in dirname.

Arguments filename and dirname to be transferred to

Returns return code from scp

qsub(dirname, **kwargs)
Submit job remotely on host.

This is the most primitive implementation: it just runs the commands

cd remotedir && qsub qscript

on Manager._hostname. remotedir is dirname under Manager._scratchdir and qscript defaults
to the queuing system script hat was produced from the template Manager._qscript.

remotepath(*args)
Directory on the remote machine.

remoteuri(*args)
URI of the directory on the remote machine.

setup_MD(jobnumber, struct=’MD_POSRES/md.pdb’, **kwargs)
Set up production and transfer to host.

Arguments

1.3. Gromacs package 155

GromacsWrapper Documentation, Release 0.1.12

• jobnumber: 1,2 ...

• struct is the starting structure (default from POSRES run but that is just a guess);

• kwargs are passed to gromacs.setup.MD()

setup_posres(**kwargs)
Set up position restraints run and transfer to host.

kwargs are passed to gromacs.setup.MD_restrained()

waitfor(dirname, **kwargs)
Wait until the job associated with dirname is done.

Super-primitive, uses a simple while ... sleep for seconds delay

Arguments

dirname look for log files under the remote dir corresponding to dirname

seconds delay in seconds during re-polling

gromacs.run – Running simulations

Helper functions and classes around gromacs.tools.Mdrun.

class MDrunner(dirname=’.’, **kwargs)
A class to manage running mdrun in various ways.

In order to do complicated multiprocessor runs with mpiexec or similar you need to derive from this class and
override

•MDrunner.mdrun with the path to the mdrun executable

•MDrunner.mpiexec with the path to the MPI launcher

•MDrunner.mpicommand() with a function that returns the mpi command as a list

In addition there are two methods named prehook() and posthook() that are called right before and after
the process is started. If they are overriden appropriately then they can be used to set up a mpi environment.

Set up a simple run with mdrun.

Keywords

dirname Change to this directory before launching the job. Input files must be supplied relative
to this directory.

keywords All other keword arguments are used to construct the mdrun commandline. Note that
only keyword arguments are allowed.

check_success()
Check if mdrun finished successfully.

(See check_mdrun_success() for details)

commandline(**mpiargs)
Returns simple command line to invoke mdrun.

If mpiexec is set then mpicommand() provides the mpi launcher command that prefixes the actual
mdrun invocation:

mpiexec [mpiargs] mdrun [mdrun-args]

The mdrun-args are set on initializing the class. Override mpicommand() to fit your system if the simple
default OpenMP launcher is not appropriate.

156 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

mdrun
path to the mdrun executable (or the name if it can be found on PATH)

mpicommand(*args, **kwargs)
Return a list of the mpi command portion of the commandline.

Only allows primitive mpi at the moment: mpiexec -n ncores mdrun mdrun-args

(This is a primitive example for OpenMP. Override it for more complicated cases.)

mpiexec
path to the MPI launcher (e.g. mpiexec)

posthook(**kwargs)
Called directly after the process terminated (also if it failed).

prehook(**kwargs)
Called directly before launching the process.

run(pre=None, post=None, **mpiargs)
Execute the mdrun command (possibly as a MPI command) and run the simulation.

Keywords

pre a dictionary containing keyword arguments for the prehook()

post a dictionary containing keyword arguments for the posthook()

mpiargs keyword arguments that are processed by mpicommand()

run_check(**kwargs)
Run mdrun and check if run completed when it finishes.

This works by looking at the mdrun log file for ‘Finished mdrun on node’. It is useful to implement robust
simulation techniques.

Arguments kwargs are keyword arguments that are passed on to run() (typically used for mpi
things)

Returns

• True if run completed successfully

• False otherwise

class MDrunnerOpenMP(dirname=’.’, **kwargs)
Manage running mdrun as an OpenMP multiprocessor job.

Set up a simple run with mdrun.

Keywords

dirname Change to this directory before launching the job. Input files must be supplied relative
to this directory.

keywords All other keword arguments are used to construct the mdrun commandline. Note that
only keyword arguments are allowed.

class MDrunnerOpenMP64(dirname=’.’, **kwargs)
Manage running mdrun as an OpenMP multiprocessor job (64-bit executable).

Set up a simple run with mdrun.

Keywords

dirname Change to this directory before launching the job. Input files must be supplied relative
to this directory.

1.3. Gromacs package 157

http://openmp.org/wp/
http://openmp.org/wp/

GromacsWrapper Documentation, Release 0.1.12

keywords All other keword arguments are used to construct the mdrun commandline. Note that
only keyword arguments are allowed.

class MDrunnerMpich2Smpd(dirname=’.’, **kwargs)
Manage running mdrun as mpich2 multiprocessor job with the SMPD mechanism.

Set up a simple run with mdrun.

Keywords

dirname Change to this directory before launching the job. Input files must be supplied relative
to this directory.

keywords All other keword arguments are used to construct the mdrun commandline. Note that
only keyword arguments are allowed.

check_mdrun_success(logfile)
Check if mdrun finished successfully.

Analyses the output from mdrun in logfile. Right now we are simply looking for the line “Finished mdrun on
node” in the last 1kb of the file. (The file must be seeakable.)

Arguments

logfile [filename] Logfile produced by mdrun.

Returns boolean (True if all ok, False otherwise)

1.4 Analysis

The analysis package uses the gromacs package and various other third party ones such as numpy and pylab. It
provides a frame work to analyze Gromacs MD simulations.

1.4.1 Analysis core modules

The core modules contain the important classes Simulation and Plugin. An analysis class is derived from
gromacs.analysis.Simulation and additional plugins from gromacs.analysis.plugins are added
to the instance; these plugin classes must be derived from Plugin.

gromacs.analysis – Analysis Package Overview

The gromacs.analysis package is a framework for analyzing Gromacs MD trajectories. The basic object is the
Simulation class. For a particular project one has to derive a class from Simulation and add analysis plugin
classes (from gromacs.analysis.plugins) for specific analysis tasks. This is slightly cumbersome but flexible.

New analysis plugins should follow the API sketched out in gromacs.analysis.core; see an example for use
there.

Right now the number of plugins is limited and simply demonstrates how to use the framework in principle. If you
would like to contribute your own plugins feel free to send then to the package author. If they have been written
according to the API they will be added to the distribution and of course you will be acknowledged in the list of plugin
authors in gromacs.analysis.plugins.

158 Chapter 1. Contents

http://www.mcs.anl.gov/research/projects/mpich2/
http://numpy.scipy.org
http://pylab.scipy.org
http://www.gromacs.org
mailto:oliver.beckstein@bioch.ox.ac.uk

GromacsWrapper Documentation, Release 0.1.12

Simulation class

The Simulation class is central for doing analysis. The user can derive a custom analysis class that pre-defines
values for plugins as seen in the Example.

class Simulation(**kwargs)
Class that represents one simulation.

Analysis capabilities are added via plugins.

1.Set the active plugin with the Simulation.set_plugin() method.

2.Analyze the trajectory with the active plugin by calling the Simulation.run() method.

3.Analyze the output from run() with Simulation.analyze(); results are stored in the plugin’s
results dictionary.

4.Plot results with Simulation.plot().

Set up a Simulation object.

Keywords

sim Any object that contains the attributes tpr, xtc, and optionally ndx (e.g.
gromacs.cbook.Transformer). The individual keywrods such as xtc override
the values in sim.

tpr Gromacs tpr file (required)

xtc Gromacs trajectory, can also be a trr (required)

edr Gromacs energy file (only required for some plugins)

ndx Gromacs index file

analysisdir directory under which derived data are stored; defaults to the directory containing
the tpr [None]

plugins [list] plugin instances or tuples (plugin class, kwarg dict) or tuples (plugin_class_name,
kwarg dict) to be used; more can be added later with Simulation.add_plugin().

add_plugin(plugin, **kwargs)
Add a plugin to the registry.

•If plugin is a Plugin instance then the instance is directly registered and any keyword arguments are
ignored.

•If plugin is a Plugin class object or a string that can be found in gromacs.analysis.plugins
then first an instance is created with the given keyword arguments and then registered.

Arguments

plugin [class or string, or instance] If the parameter is a class then it should have
been derived from Plugin. If it is a string then it is taken as a plugin name in
gromacs.analysis.plugins and the corresponding class is added. In both cases
any parameters for initizlization should be provided.

If plugin is already a Plugin instance then the kwargs will be ignored.

kwargs The kwargs are specific for the plugin and should be described in its documentation.

set_plugin(plugin_name)
Set the plugin that should be used by default.

If no plugin_name is supplied to run(), analyze() etc. then this will be used.

1.4. Analysis 159

GromacsWrapper Documentation, Release 0.1.12

run(plugin_name=None, **kwargs)
Generate data files as prerequisite to analysis.

analyze(plugin_name=None, **kwargs)
Run analysis for the plugin.

plot(plugin_name=None, figure=False, **kwargs)
Plot all data for the selected plugin:

plot(plugin_name, **kwargs)

Arguments

plugin_name name of the plugin to plot data from

figure

• True: plot to file with default name.

• string: use this filename (+extension for format)

• False: only display

kwargs arguments for plugin plot function (in many cases provided by
gromacs.formats.XVG.plot() and ultimately by pylab.plot())

Example

Here we analyze a protein, which has three Cysteines (C96, C243, C372). We will use the
plugins.CysAccessibility and the plugins.Distances plugin (arguments for Distances omitted):

from gromacs.analysis import Simulation
from gromacs.analysis.plugins import CysAccessibility, Distances

S = Simulation(tpr=..., xtc=..., analysisdir=...,
plugins=[(’CysAccessibility’, {’cysteines’: [96, 243, 372]}),

Distances(...),
])

S.set_plugin(’CysAccessibility’) # do CysAccessibility analysis
S.run() # analyze trajectory and write files
S.analyze() # analyze output files
S.plot(figure=True) # plot and save the figure

The plugins can be supplied when the Simulation object is constructed, or they can be later added, e.g.

S.add_plugin(Distances(name=’Dist2’, ...))

This second Distances analysis would be available with

S.set_plugin(’Dist2’)

Other plugins might require no or a very different initialization. See the plugin documentation for what is required.

analysis.core – Core classes for analysis of Gromacs trajectories

This documentation is mostly of interest to programmers who want to write analysis plugins.

160 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

Programming API for plugins

Additional analysis capabilities are added to a gromacs.analysis.Simulation class with plugin classes. For
an example see gromacs.analysis.plugins.

API description Analysis capabilities can be added with plugins to the simulation class. Each plugin is registered
with the simulation class and provides at a minimum run(), analyze(), and plot() methods.

A plugin consists of a subclass of Plugin and an associated Worker instance. The former is responsible for admin-
istrative tasks and documentation, the latter implements the analysis code.

A plugin class must be derived from Plugin and typically bears the name that is used to access it. A plugin instance
must be registered with a Simulation object. This can be done implicitly by passing the Simulation instance in
the simulation keyword argument to the constructor or by explicitly calling the Plugin.register() method
with the simulation instance. Alternatively, one can also register a plugin via the Simulation.add_plugin()
method.

Registering the plugin means that the actual worker class is added to the Simulation.plugins dictionary.

A plugin must eventually obtain a pointer to the Simulation class in order to be able to access simulation-global
parameters such as top directories or input files.

See analysis.plugins.CysAccessibility and analysis.plugins._CysAccessibility in
analysis/plugins/CysAccessibility.py as examples.

API requirements

• Each plugin is contained in a separate module in the gromacs.analysis.plugins package. The name of
the module must be the name of the plugin class in all lower case.

• The plugin name is registered in gromacs.analysis.plugins.__plugins__. (Together with the file
naming convention this allows for automatic and consistent loading.)

• The plugin itself is derived from Plugin; the only changes are the doc strings and setting the
Plugin.worker_class class attribute to a Worker class.

• The corresponding worker class is derived from Worker and must implement

– Worker.__init__() which can only use keyword arguments to initialize the plugin. It must ensure
that init methods of super classes are also called. See the existing plugins for details.

– Worker.run() which typically generates the data by analyzing a trajectory, possibly multiple times. It
should store results in files.

– Worker.analyze() analyzes the data generated by Worker.run().

– Worker.plot() plots the analyzed data.

– Worker._register_hook() (see below)

• The worker class can access parameters of the simulation via the Worker.simulation attribute that is
automatically set when the plugin registers itself with Simulations. However, the plugin should not rely on
simulation being present during initialization (__init__) because registration of the plugin might occur after
init.

This also means that one cannot use the directory methods such as Worker.plugindir() because they
depend on Simulation.topdir() and Simulation.plugindir().

Any initialization that requires access to the Simulation instance should be moved into the
Worker._register_hook() method. It is called when the plugin is actually being registered. Note that

1.4. Analysis 161

GromacsWrapper Documentation, Release 0.1.12

the hook must also call the hook of the super class before setting any values. The hook should pop any arguments
that it requires and ignore everything else.

• Parameters of the plugin are stored in Worker.parameters (either as attributes or as key/value pairs, see
the container class gromacs.utilities.AttributeDict).

• Results are stored in Worker.results (also a gromacs.utilities.AttributeDict).

Classes

class Simulation(**kwargs)
Bases: object

Class that represents one simulation.

Analysis capabilities are added via plugins.

1.Set the active plugin with the Simulation.set_plugin() method.

2.Analyze the trajectory with the active plugin by calling the Simulation.run() method.

3.Analyze the output from run() with Simulation.analyze(); results are stored in the plugin’s
results dictionary.

4.Plot results with Simulation.plot().

Set up a Simulation object.

Keywords

sim Any object that contains the attributes tpr, xtc, and optionally ndx (e.g.
gromacs.cbook.Transformer). The individual keywrods such as xtc override
the values in sim.

tpr Gromacs tpr file (required)

xtc Gromacs trajectory, can also be a trr (required)

edr Gromacs energy file (only required for some plugins)

ndx Gromacs index file

analysisdir directory under which derived data are stored; defaults to the directory containing
the tpr [None]

plugins [list] plugin instances or tuples (plugin class, kwarg dict) or tuples (plugin_class_name,
kwarg dict) to be used; more can be added later with Simulation.add_plugin().

add_plugin(plugin, **kwargs)
Add a plugin to the registry.

•If plugin is a Plugin instance then the instance is directly registered and any keyword arguments are
ignored.

•If plugin is a Plugin class object or a string that can be found in gromacs.analysis.plugins
then first an instance is created with the given keyword arguments and then registered.

Arguments

plugin [class or string, or instance] If the parameter is a class then it should have
been derived from Plugin. If it is a string then it is taken as a plugin name in
gromacs.analysis.plugins and the corresponding class is added. In both cases
any parameters for initizlization should be provided.

162 Chapter 1. Contents

http://docs.python.org/library/functions.html#object

GromacsWrapper Documentation, Release 0.1.12

If plugin is already a Plugin instance then the kwargs will be ignored.

kwargs The kwargs are specific for the plugin and should be described in its documentation.

set_plugin(plugin_name)
Set the plugin that should be used by default.

If no plugin_name is supplied to run(), analyze() etc. then this will be used.

get_plugin(plugin_name=None)
Return valid plugin or the default for *plugin_name*=‘‘None‘‘.

run(plugin_name=None, **kwargs)
Generate data files as prerequisite to analysis.

analyze(plugin_name=None, **kwargs)
Run analysis for the plugin.

plot(plugin_name=None, figure=False, **kwargs)
Plot all data for the selected plugin:

plot(plugin_name, **kwargs)

Arguments

plugin_name name of the plugin to plot data from

figure

• True: plot to file with default name.

• string: use this filename (+extension for format)

• False: only display

kwargs arguments for plugin plot function (in many cases provided by
gromacs.formats.XVG.plot() and ultimately by pylab.plot())

run_all(**kwargs)
Execute the run() method for all registered plugins.

analyze_all(**kwargs)
Execute the analyze() method for all registered plugins.

_apply_all(func, **kwargs)
Execute func for all plugins.

topdir(*args)
Returns a path under self.analysis_dir, which is guaranteed to exist.

Note: Parent dirs are created if necessary.

plugindir(plugin_name, *args)
Directory where the plugin creates and looks for files.

check_file(filetype, path)
Raise ValueError if path does not exist. Uses filetype in message.

has_plugin(plugin_name)
Returns True if plugin_name is registered.

check_plugin_name(plugin_name)
Raises a exc:ValueError if plugin_name is not registered.

1.4. Analysis 163

http://docs.python.org/library/exceptions.html#exceptions.ValueError

GromacsWrapper Documentation, Release 0.1.12

current_plugin
The currently active plugin (set with Simulation.set_plugin()).

class Plugin(name=None, simulation=None, **kwargs)
Plugin class that can be added to a Simulation instance.

All analysis plugins must be derived from this base class.

If a Simulation instance is provided to the constructore in the simulation keyword argument then the plugin
instantiates and registers a worker class in Simulation.plugins and adds the Simulation instance to
the worker.

Otherwise the Plugin.register() method must be called explicitly with a Simulation instance.

The plugin class handles the administrative tasks of interfacing with the Simulation class. The worker runs
the analysis.

Note: If multiple Plugin instances are added to a Simulation one must set the name keyword argument to
distinguish the instances. Plugins are referred to by this name in all further interactions with the user. There are
no sanity checks: A newer plugin with the same name simply replaces the previous one.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

plugin_name
Name of the plugin; this must be a unique identifier across all plugins of a Simulation object. It should
also be human understandable and must be a valid python identifier as it is used as a dict key.

simulation
The Simulation instance who owns the plugin. Can be None until a successful call to register().

worker
The Worker instance of the plugin.

worker_class
actual plugin gromacs.analysis.core.Worker class (name with leading underscore)

register(simulation)
Register the plugin with the Simulation instance.

This method also ensures that the worker class knows the simulation instance. This is typically required
for its run(), analyze(), and plot() methods.

class Worker(**kwargs)
Bases: gromacs.utilities.FileUtils

Base class for a plugin worker.

Set up Worker class.

Keywords

plugin [instance] The Plugin instance that owns this worker. Must be supplied.

164 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

simulation A :class:Simulation‘ object, required for registration, but can be supplied later.

kwargs All other keyword arguments are passed to the super class.

topdir(*args)
Returns a directory located under the simulation top directory.

plugindir(*args)
Returns a directory located under the plugin top directory.

savefig(filename=None, ext=’png’)
Save the current figure under the default name or filename.

Uses the supplied format and extension ext.

_register_hook(**kwargs)
Things to initialize once the Simulation instance is known.

The hook is called from Plugin.register().

Note: Subclasses should do all their Simulation - dependent initialization in their own
_register_hook() which must call the super class hook via the super mechanism.

1.4.2 Support modules

Support modules contain code that simplifies working with Simulation instances. It also uses routines from
numkit.

analysis.collections – Handling of groups of simulation instances

This module contains classes and functions that combine multiple gromacs.analysis.core.Simulation
objects. In this way the same kind of analysis or plotting task can be carried out simultaneously for all simulations in
the collection.

class Collection()
Multiple objects (organized as a list).

Methods are applied to all objects in the Collection and returned as new Collection:

>>> from gromacs.analysis.collections import Collection
>>> animals = Collection([’ant’, ’boar’, ’ape’, ’gnu’])
>>> animals.startswith(’a’)
Collection([True, False, True, False])

Similarly, attributes are returned as a Collection.

Using Collection.save() one can save the whole collection to disk and restore it later with the
Collection.load() method

>>> animals.save(’zoo’)
>>> arc = Collection()
>>> arc.load(’zoo’)
>>> arc.load(’zoo’, append=True)
>>> arc
[’ant’, ’boar’, ’ape’, ’gnu’, ’ant’, ’boar’, ’ape’, ’gnu’]

1.4. Analysis 165

http://docs.python.org/library/functions.html#super

GromacsWrapper Documentation, Release 0.1.12

1.4.3 Analysis plugins

Analysis plugins consist of a book-keeping class derived from gromacs.analysis.core.Plugin and a
“worker” class (a child of gromacs.analysis.core.Worker), which contains the actual analysis code.

Plugins

Plugin modules are named like the plugin class but the filename is all lower case. All plugin classes are available in
the gromacs.analysis.plugins name space.

analysis.plugins – Plugin Modules

Classes for gromacs.analysis.core.Simulation that provide code to analyze trajectory data.

New analysis plugins should follow the API sketched out in gromacs.analysis.core; see an example for use
there.

List of plugins Right now the number of plugins is limited. Feel free to contribute your own by sending it to the
package author. You will be acknowledged in the list below.

Table 1.3: Plugins for analysis.

plugin author description
CysAccessibility1 estimate accessibility of Cys residues by

water
HelixBundle 1 g_bundle analysis of helices
Distances 1 time series of distances
MinDistances 1 time series of shortest distances
COM 1 time series of centres of mass
Dihedrals 1 analysis of dihedral angles
RMSF 1 calculate root mean square fluctuations
RMSD 1 calculate root mean square distance
Energy 1 terms from the energy file

Table 1.4: Plugins for trajectory manipulation and status queries.

plugin author description
Trajectories 1 write xy-fitted trajectories
StripWater 1 remove solvent (and optionally fit to reference)
:class:‘ProteinOnly 1 remove all atoms except the Protein (and optionally fit to reference)
Ls 1 simple ls (for testing)

Plugin classes
class CysAccessibility(name=None, simulation=None, **kwargs)

CysAccessibility plugin.

For each frame of a trajectory, the shortest distance of all water oxygens to all cysteine sulphur atoms is com-
puted. For computational efficiency, only distances smaller than a cutoff are taken into account. A histogram of
the distances shows how close water molecules can get to cysteines. The closest approach distance should be
indicative of the reactivity of the SH group with crosslinking agents.

class CysAccessibility(cysteines, [cys_cutoff, [name, [simulation]]])

Arguments

166 Chapter 1. Contents

mailto:oliver.beckstein@bioch.ox.ac.uk

GromacsWrapper Documentation, Release 0.1.12

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

cysteines [list] list of all resids (eg from the sequence) that are used as labels or in the form
‘Cys<resid>’. (required)

cys_cutoff [number] cutoff in nm for the minimum S-OW distance [1.0]

Note that all Cys residues in the protein are analyzed. Therefore, the list of cysteine labels must contain as many
entries as there are cysteines in the protein. There are no sanity checks.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _CysAccessibility

class HelixBundle(name=None, simulation=None, **kwargs)
HelixBundle plugin.

gromacs.g_bundle() helix analysis

class HelixBundle([helixtable, offset, with_kinks, [name, [simulation]]])

Arguments

helixtable reST table with columns “name”, “top”, “bottom”, “kink”; see
gromacs.analysis.plugins.helixbundle for details

offset add the offset to the residue numbers in helixtable [0]

helixndx provide a index file with the appropriate groups instead of the table; also requires na

na number of helices

with_kinks take kinks into account [True]

name plugin name [HelixBundle]

simulation The gromacs.analysis.Simulation instance that owns the plugin. [None]

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

1.4. Analysis 167

GromacsWrapper Documentation, Release 0.1.12

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _HelixBundle

class Distances(name=None, simulation=None, **kwargs)
Distances plugin.

The distance between the center of mass of two index groups are calculated for each time step and written to
files.

class Distances(groups, ndx, [cutoff, [name, [simulation]]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

groups [list of index group names] The first entry is the primary group, the second is the *sec-
ondary group.

ndx [index filename or list] All index files that contain the listed groups.

cutoff [float] A contact is recorded if the distance is <cutoff [0.6 nm]

Example:

Generate index files with the groups of interest, for instance with gromacs.cbook.IndexBuilder:

from gromacs.cbook import IndexBuilder
A_grp, A_ndx = IndexBuilder(tpr, [’@a 62549 & r NA’], names=[’Na1_ion’], offset=-9,

out_ndx=’Na1.ndx’, name_all="Na1").combine()
B = IndexBuilder(tpr, [’S312:OG’,’T313:OG1’,’A38:O’,’I41:O’,’A309:O’], offset=-9,

out_ndx=’Na1_site.ndx’, name_all="Na1_site")
B_grp, B_ndx = B.combine()
all_ndx_files = [A_ndx, B_ndx]

To calculate the distance between “Na1” and the “Na1_site”, create an instance with the appropriate parameters
and add them to a gromacs.analysis.Simulation instance:

dist_Na1_site = Distances(name=’Dsite’, groups=[’Na1’, ’Na1_site’], ndx=all_ndx_files)
S.add_plugin(dist_Na1_site)

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

168 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

worker_class
alias of _Distances

class MinDistances(name=None, simulation=None, **kwargs)
MinDistances plugin.

The minimum distances between the members of at least two index groups and the number of contacts are
calculated for each time step and written to files.

class Distances(groups, ndx, [cutoff, [name, [simulation]]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

groups [list of index group names] The first entry is the primary group. All other entries are
secondary groups and the plugin calculates the minimum distance between members of the
primary group and the members of each secondary group.

ndx [index filename or list] All index files that contain the listed groups.

cutoff [float] A contact is recorded if the distance is <cutoff [0.6 nm]

Example:

Generate index files with the groups of interest, for instance with gromacs.cbook.IndexBuilder:

from gromacs.cbook import IndexBuilder
A_grp, A_ndx = IndexBuilder(tpr, [’@a 62549 & r NA’], names=[’Na1_ion’], offset=-9,

out_ndx=’Na1.ndx’, name_all="Na1").combine()
B = IndexBuilder(tpr, [’S312:OG’,’T313:OG1’,’A38:O’,’I41:O’,’A309:O’], offset=-9,

out_ndx=’Na1_site.ndx’, name_all="Na1_site")
B_grp, B_ndx = B.combine()
all_ndx_files = [A_ndx, B_ndx]

To calculate the distance between “Na1” and the “Na1_site”, create an instance with the appropriate parameters
and add them to a gromacs.analysis.Simulation instance:

dist_Na1_site = Distances(name=’Dsite’, groups=[’Na1’, ’Na1_site’], ndx=all_ndx_files)
S.add_plugin(dist_Na1_site)

To calculate the individual distances:

dist_Na1_res = Distances(name=’Dres’, groups=[’Na1’]+B.names, ndx=all_ndx_files)
S.add_plugin(dist_Na1_res)

(Keeping the second IndexBuilder instance B allows us to directly use all groups without typing them, B.names
= [’A309_O’, ’S312_OG’, ’I41_O’, ’T313_OG1’, ’A38_O’].)

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

1.4. Analysis 169

GromacsWrapper Documentation, Release 0.1.12

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _MinDistances

class COM(name=None, simulation=None, **kwargs)
COM plugin.

Calculate the centre of mass (COM) of various index groups.

class COM(group_names, [ndx, [offset, [name, [simulation]]]])

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _COM

class Dihedrals(name=None, simulation=None, **kwargs)
Dihedrals plugin.

class Dihedrals(dihedrals, [labels, [name, [simulation]]])

Keywords

dihedrals list of tuples; each tuple contains atom indices that define the dihedral.

labels optional list of labels for the dihedrals. Must have as many entries as dihedrals.

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

170 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

worker_class
alias of _Dihedrals

class RMSF(name=None, simulation=None, **kwargs)
RMSF plugin.

Compute the root mean square fluctuations (RMSF) of the C-alpha atoms. The trajectory is always fitted to the
reference structure in the tpr file.

class RMSF([name, [simulation]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _RMSF

class RMSD(name=None, simulation=None, **kwargs)
RMSD plugin.

Calculation of the root mean square distance (RMSD) of a protein structure over the course of a MD simulation.

The trajectory is always fitted to the reference structure in the tpr file.

class RMSD([name, [simulation]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

1.4. Analysis 171

GromacsWrapper Documentation, Release 0.1.12

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _RMSD

class Energy(name=None, simulation=None, **kwargs)
Energy plugin.

Analysis of terms in the Gromacs energy (edr) file.

class Energy([name, [simulation]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _Energy

class Trajectories(name=None, simulation=None, **kwargs)
Trajectories plugin.

Write new xy-fitted trajectories (see gromacs.cbook.trj_fitandcenter()),

class Trajectories([name, [simulation]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

172 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

worker_class
alias of _Trajectories

class StripWater(name=None, simulation=None, **kwargs)
StripWater plugin.

Write a new trajectory which has the water index group removed.

class StripWater([selection, [name, [simulation]]])

Arguments

selection optional selection for the water instead of “SOL”

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _StripWater

class ProteinOnly(name=None, simulation=None, **kwargs)
ProteinOnly plugin.

Write a new trajectory which has the water index group removed.

class ProteinOnly([selection, [name, [simulation, [...]]]])

Arguments

selection optional selection for the water instead of “SOL”

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

force True will always regenerate trajectories even if they already exist, False raises an ex-
ception, None does the sensible thing in most cases (i.e. notify and then move on).

dt [float or list of floats] only write every dt timestep (in ps); if a list of floats is supplied, write
multiple trajectories, one for each dt.

compact [bool] write a compact representation

fit Create an additional trajectory from the stripped one in which the Protein group is rms-
fitted to the initial structure. See gromacs.cbook.Transformer.fit() for details.
Useful values:

1.4. Analysis 173

GromacsWrapper Documentation, Release 0.1.12

• “xy” : perform a rot+trans fit in the x-y plane

• “all”: rot+trans

• None: no fitting

If fit is not supplied then the constructore-default is used
(_ProteinOnly.parameters.fit).

keepalso List of literal make_ndx selections that select additional groups of atoms that should
also be kept in addition to the protein. For example *keepalso*=[“‘POPC”’, ‘resname
DRUG’].

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _ProteinOnly

class Ls(name=None, simulation=None, **kwargs)
ls plugin.

This simply lists the files on disk. It is useful for testing the plugin architecture.

class Ls([name, [simulation]])

Arguments

name [string] plugin name (used to access it)

simulation [instance] The gromacs.analysis.Simulation instance that owns the plu-
gin.

Registers the plugin with the simulation class.

Specific keyword arguments are listed below, all other kwargs are passed through.

Arguments

name [string] Name of the plugin. Should differ for different instances. Defaults to the class
name.

simulation [Simulation instance] The Simulation instance that owns this plugin instance.
Can be None but then the register() method has to be called manually with a simula-
tion instance later.

kwargs All other keyword arguments are passed to the Worker.

worker_class
alias of _Ls

174 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

Developer notes In principle all that needs to be done to automatically load plugins is to add their name to
__plugins__. See the source code for further comments and how the auto loading of plugins is done.

__plugins__
All available plugin names are listed here. Because this is used to automatically set up imports a module file
must be named like the plugin class it contains but in all lower case. For example, the Distances plugin class is
contained in the module distances (the file plugins/distances.py).

__plugin_classes__
Gives access to all available plugin classes (or use the module __dict__)

Helper modules

Various helper classes that can be used by plugins. Because they are not necessarily restricted to a single plugin they
have been moved into separate modules for code reuse.

analysis.plugins.dist — Helper Class for g_dist

dist contains helper classes for other analysis plugins that want to make use of the Gromacs command g_dist.

Overview The task we are solving is to analyze output from

g_dist -f md.xtc -s md.tpr -n cys_ow.ndx -dist 1.0 | bzip2 -vc > mindist_C60_OW_1nm.dat.bz2

and produce a histogram of minimum contact distances. This should provide an estimate for water accessibility of the
atom (here: SG of Cys60).

File format g_dist with the -dist CUTOFF option writes to stdout the identity of all atoms within the cutoff
distance and the distance itself:

Selected 22: ’CYSH_CYSH_60_&_SG’
Selected 25: ’OW’
....
t: 184 6682 SOL 35993 OW 0.955138 (nm)
t: 184 10028 SOL 46031 OW 0.803889 (nm)
t: 185 6682 SOL 35993 OW 0.879949 (nm)
t: 185 10028 SOL 46031 OW 0.738299 (nm)
t: 186 6682 SOL 35993 OW 0.897016 (nm)
t: 186 10028 SOL 46031 OW 0.788268 (nm)
t: 187 6682 SOL 35993 OW 0.997688 (nm)
....

Classes
class Mindist(datasource, cutoff=None)

The Mindist class allows analysis of the output from g_dist -dist CUTOFF.

Output is read from a file or stream. The raw data is transformed into a true ‘mindist’ time series (available in
the Mindist.distances attribute): for each frame only the shortest distance is stored (whereas g_dist
provides all distances below the cutoff).

Todo

• Save analysis to pickle or data files.

1.4. Analysis 175

GromacsWrapper Documentation, Release 0.1.12

• Export data as simple data files for plotting in other programs.

Note: gromacs.tools.G_mindist is apparently providing exactly the service that is required: a time-
series of the minimum distance between two groups. Feel free to use that tool instead :-).

Read mindist data from file or stream.

Arguments

datasource a filename (plain, gzip, bzip2) or file object

cutoff the -dist CUTOFF that was provided to g_dist; if supplied we work around a bug in
g_dist (at least in Gromacs 4.0.2) in which sometimes numbers >> CUTOFF are printed.

histogram(nbins=None, lo=None, hi=None, midpoints=False, normed=True)
Returns a distribution or histogram of the minimum distances:

If no values for the bin edges are given then they are set to 0.1 below and 0.1 above the minimum and
maximum values seen in the data.

If the number of bins is not provided then it is set so that on average 100 counts come to a bin. Set nbins
manually if the histogram only contains a single bin (and then get more data)!

Keywords

nbins [int] number of bins

lo [float] lower edge of histogram

hi [float] upper edge of histogram

midpoints [boolean] False: return edges. True: return midpoints

normed [boolean] True: return probability distribution. False: histogram

hist
Histogram of the minimum distances.

dist
Distribution of the minimum distances.

edges
Edges of the histogram of the minimum distances.

midpoints
Midpoints of the histogram of the minimum distances.

plot(**kwargs)
Plot histograms with matplotlib’s plot() function:

plot(**histogramargs, **plotargs)

Arguments for both Mindist.histogram() and pylab.plot() can be provided (qv).
class GdistData(stream)

Object that represents the standard output of g_dist -dist CUTOFF.

Initialize from a stream (e.g. a pipe) and the iterate over the instance to get the data line by line. Each line
consists of a tuple

(frame, distance)

Initialize with an open stream to the data (eg stdin or file).

Arguments

176 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

stream open stream (file or pipe or really any iterator providing the data from g_dist); the
stream is not closed automatically when the iterator completes.

__iter__()
Iterator that filters the input stream and returns (frame, distance) tuples.

gromacs.analysis.plugins.gridmatmd — Lipid bilayer analysis helper

This helper module contains code to drive GridMAT-MD.pl, available from the GridMAT-MD home page and writ-
ten by WJ Allen et al [Allen2009] . The GromacsWrapper distribution comes with version 1.0.2 of GridMAT-MD.pl
and includes a small patch so that it can accept filenames on the command line.

References

Module contents
class GridMatMD(config, filenames)

Analysis of lipid bilayers with GridMAT-MD.

It requires a configuration file and a list of structure files (gro or pdb) as input. See the documentation (pdf) for
the format of the config file. Note that the bilayer keyword will be ignored in the config file.

Set up GridMAT-MD analysis.

Arguments

config [filename] input file for GridMAT-MD (see docs)

filenames [list or glob-pattern] list of gro or pdb files, or a glob pattern that creates such a list

imshow(name, **kwargs)
Display array name with pylab.imshow.

run()
Run analysis on all files and average results.

run_frame(frame)
Run GridMAT-MD on a single frame and return results.

Arguments frame is a filename (gro or pdb)

Returns a dict of GridMapData objects; the keys are “top”, “bottom”, “average”

save(name)
Save object as pickle.

class GridMatData(filename, shape=None, delta=None)
Represent GridMatMD data file.

The loaded array data is accessible as a numpy array in GridMatData.array and bins and midpoints as
GridMatData.bins and GridMatData.midpoints respectively.

Load the data into a numpy array.

The filename is an output file from GridMAT-MD. shape and delta are optional. The shape of the array is parsed
from the filename if not provided. The spacing is set to (1,1) if not provided.

Arguments

filename 2D grid as written by GridMAT-MD

shape Shape tuple (NX, NY) of the array in filename.

1.4. Analysis 177

http://www.bevanlab.biochem.vt.edu/GridMAT-MD/index.html
http://www.bevanlab.biochem.vt.edu/GridMAT-MD/doc/GridMAT-MD_ug_v1.0.2.pdf

GromacsWrapper Documentation, Release 0.1.12

delta Tuple of bin sizes of grid (DX, DY).

imshow(**kwargs)
Display data as a 2D image using pylab.imshow().

parse_filename(filename)
Get dimensions from filename

class Grid2D(data, bins)
Represents a 2D array with bin sizes.

Addition and subtraction of grids is defined for the arrays and the bins. Multiplication and division with scalars
is also defined. Each operation returns a new Grid2D object.

(Actually, it should work for arrays of any dimension, not just 2D.)

Initialize the Grid2D instance.

Arguments

data array data, e.g. a list of array

bins tuple of lists of bin edges, one for each dimension

imshow(**kwargs)
Display data as a 2D image using pylab.imshow().

__add__(other)
Add arrays and bins (really only makes sense when averaging).

__sub__(other)
Subtract other from self (also subtracts bins... which is odd but consistent).

__mul__(x)
Multiply arrays (and bins) by a scalar x.

__div__(x)
Divide arrays (and bins) by a scalar x.

1.5 Auxiliary modules

A number of small python modules are currently bundled with GromacsWrapper as they have proven useful in the
context of which the main package is being used. However, GromacsWrapper does not depend on them and they could
be safely ignored (and might be removed if we ever get to a 1.0 release...).

1.5.1 numkit — Numerical analysis toolkit

A collection of functions and classes built on top of NumPy and SciPy to aid the numerical analysis of data. It is geared
towards the use of data coming from molecular simulations, namely time series. It is used in gromacs.analysis.

See Also:

Core functionality is based on SciPy (scipy module).

Contents:

178 Chapter 1. Contents

http://www.scipy.org/

GromacsWrapper Documentation, Release 0.1.12

numkit.fitting — Fitting data

Pearson_r(x, y)
Pearson’s r (correlation coefficient).

Pearson(x,y) –> correlation coefficient

x and y are arrays of same length.

Historical note – Naive implementation of Pearson’s r :: Ex = scipy.stats.mean(x) Ey = scipy.stats.mean(y)
covxy = numpy.sum((x-Ex)*(y-Ey)) r = covxy/math.sqrt(numpy.sum((x-Ex)**2)*numpy.sum((y-Ey)**2))

linfit(x, y, dy=, [])
Fit a straight line y = a + bx to the data in x and y.

Errors on y should be provided in dy in order to assess the goodness of the fit and derive errors on the parameters.

linfit(x,y[,dy]) –> result_dict

Fit y = a + bx to the data in x and y by analytically minimizing chi^2. dy holds the standard deviations of the
individual y_i. If dy is not given, they are assumed to be constant (note that in this case Q is set to 1 and it is
meaningless and chi2 is normalised to unit standard deviation on all points!).

Returns the parameters a and b, their uncertainties sigma_a and sigma_b, and their correlation coefficient r_ab;
it also returns the chi-squared statistic and the goodness-of-fit probability Q (that the fit would have chi^2 this
large or larger; Q < 10^-2 indicates that the model is bad — Q is the probability that a value of chi-square as
poor as the calculated statistic chi2 should occur by chance.)

Returns result_dict with components

intercept, sigma_intercept a +/- sigma_a

slope, sigma_slope b +/- sigma_b

parameter_correlation correlation coefficient r_ab between a and b

chi_square chi^2 test statistic

Q_fit goodness-of-fit probability

Based on ‘Numerical Recipes in C’, Ch 15.2.

class FitFunc(x, y)
Fit a function f to data (x,y) using the method of least squares.

The function is fitted when the object is created, using scipy.optimize.leastsq(). One must derive
from the base class FitFunc and override the FitFunc.f_factory() (including the definition of an
appropriate local fitfunc() function) and FitFunc.initial_values() appropriately. See the exam-
ples for a linear fit FitLin, a 1-parameter exponential fit FitExp, or a 3-parameter double exponential fit
FitExp2.

The object provides two attributes

FitFunc.parameters list of parameters of the fit

FitFunc.message message from scipy.optimize.leastsq()

After a successful fit, the fitted function can be applied to any data (a 1D-numpy array) with FitFunc.fit().

f_factory()
Stub for fit function factory, which returns the fit function. Override for derived classes.

fit(x)
Applies the fit to all x values

1.5. Auxiliary modules 179

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq

GromacsWrapper Documentation, Release 0.1.12

initial_values()
List of initital guesses for all parameters p[]

class FitLin(x, y)
y = f(x) = p[0]*x + p[1]

class FitExp(x, y)
y = f(x) = exp(-p[0]*x)

class FitExp2(x, y)
y = f(x) = p[0]*exp(-p[1]*x) + (1-p[0])*exp(-p[2]*x)

numkit.timeseries — Time series manipulation and analysis

autocorrelation_fft(series, remove_mean=True, paddingcorrection=True, normalize=False, **kwargs)
Calculate the auto correlation function.

autocorrelation_fft(series,remove_mean=False,**kwargs) –> acf

The time series is correlated with itself across its whole length. Only the [0,len(series)[interval is returned.

By default, the mean of the series is subtracted and the correlation of the fluctuations around the mean are
investigated.

For the default setting remove_mean=True, acf[0] equals the variance of the series, acf[0] = Var(series) = <(se-
ries - <series>)**2>.

Optional:

•The series can be normalized to its 0-th element so that acf[0] == 1.

•For calculating the acf, 0-padding is used. The ACF should be corrected for the 0-padding (the values for
larger lags are increased) unless mode=’valid’ is set (see below).

Note that the series for mode=’same’|’full’ is inaccurate for long times and should probably be truncated at
1/2*len(series)

Arguments

series (time) series, a 1D numpy array of length N

remove_mean False: use series as is; True: subtract mean(series) from series [True]

paddingcorrection False: corrected for 0-padding; True: return as is it is. (the latter is
appropriate for periodic signals). The correction for element 0=<i<N amounts to a factor
N/(N-i). Only applied for modes != “valid” [True]

normalize True divides by acf[0] so that the first element is 1; False leaves un-normalized
[False]

mode “full” | “same” | “valid”: see scipy.signal.fftconvolve() [”full”]

kwargs other keyword arguments for scipy.signal.fftconvolve()

tcorrel(x, y, nstep=100, debug=False)
Calculate the correlation time and an estimate of the error of <y>.

The autocorrelation function f(t) is calculated via FFT on every nstep of the fluctuations of the data around the
mean (y-<y>). The normalized ACF f(t)/f(0) is assumed to decay exponentially, f(t)/f(0) = exp(-t/tc) and the
decay constant tc is estimated as the integral of the ACF from the start up to its first root.

See Frenkel and Smit, Academic Press, San Diego 2002, p526.

Note: nstep should be set sufficiently large so that there are less than ~50,000 entries in the input.

180 Chapter 1. Contents

http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve

GromacsWrapper Documentation, Release 0.1.12

Arguments

x 1D array of abscissa values (typically time)

y 1D array of the ibservable y(x)

nstep only analyze every nstep datapoint to speed up calculation [100]

Returns dictionary with entries tc (decay constant in units of x), t0 (value of the first root along x
(y(t0) = 0)), sigma (error estimate for the mean of y, <y>, corrected for correlations in the data).

numkit.integration — Numerical integration of data

See Also:

scipy.integrate

simps_error(y, x=None, dx=1, axis=-1, even=’avg’)
Error on integral evaluated with Simpson’s rule from errors of points, y.

Evaluate the integral with scipy.integrate.simps(). For a given vector y of errors on the function
values, the error on the integral is calculated via propagation of errors.

Arguments

y errors for the tabulated values of the integrand f

x values of abscissa at which f was tabulated (can be None and then dx should be provided)

dx constant spacing of the abscissa

axis axis in y along which the data lies

even see scipy.integrate.simps() (‘avg’, ‘first’, ‘last’)

exception LowAccuracyWarning
Warns that results may possibly have low accuracy.

numkit.observables — Observables as quantities with errors

Example showing how to use QuantityWithError:

>>> from numkit.observables import QuantityWithError
>>> a = QuantityWithError(2.0, 1.0)
>>> a2 = QuantityWithError(2.0, 1.0) # 2nd independent measurement of a
>>> a3 = QuantityWithError(2.0, 1.0) # 3rd independent measurement of a
>>> b = QuantityWithError(-1, 0.5)
>>> a+a
4 (2)
>>> a+a2
4 (1.41421)
>>> (a+a+a)/3
2 (1)
>>> (a+a2+a3)/3
2 (0.57735)
>>> a/b
-2 (1.41421)

Note that each quantity has an identity: it makes a difference to the error of a combined quantity such as a+a if the
inputs are independent measurements of the same.

1.5. Auxiliary modules 181

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
http://mathworld.wolfram.com/SimpsonsRule.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps

GromacsWrapper Documentation, Release 0.1.12

class QuantityWithError(value, error=None, qid=None, **kwargs)
Number with error and basic error propagation arithmetic.

The quantity is assumed to be a mean of an observable (value) with an associated (Gaussian) error error
(which is the sqrt of the variance variance of the data).

The covariance is not taken into account in the error propagation (i.e. all quantities are assumed to be uncorre-
lated) with the exception of the case of binary relations of the quantity with itself. For instance, a*a is correctly
interpreted as a**2). However, this behaviour is not guaranteed to work for any complicated expression.

When combining with pure numbers you have to wrap these numbers if they are to the left of a
QuantityWithError, e.g.

>>> a = QuantityWithError(2.0, 1.0)
>>> 1/a
TypeError
>>> QuantityWithError(1.0)/a
0.5 (0.25)

static asQuantityWithError(other)
Return a QuantityWithError.

If the input is already a QuantityWithError then it is returned itself. This is important because a
new quantity x’ would be considered independent from the original one x and thus lead to different error
estimates for quantities such as x*x versus x*x’.

copy()
Create a new quantity with the same value and error.

deepcopy()
Create an exact copy with the same identity.

isSame(other)
True if other is the same observable.

Also True if other was derived from self without using any other independent quantities with errors.

See Also:

Various packages that describe quantities with units.

1.5.2 vmd — Remote Tcl commands in VMD

The vmd module contains a very simple client that can connect to a locally running server process in VMD. This
allows running VMD Tcl commands remotely. See VMD Tcl Text Commands for all available commands.

The vmdmodule is independent from gromacs and distribute for convenience. It can be used to implement additional
visualization and analysis tasks.

VMD control

Simple client to transmit Tcl commands to a server running in VMD.

VMD and the server run locally and can be started from the module. Once the server is running, one can use
vmd.client to communicate with the server process via a local socket.

182 Chapter 1. Contents

http://mathworld.wolfram.com/ErrorPropagation.html
http://www.ks.uiuc.edu/Research/vmd/
http://www.tcl.tk/man/
http://www.ks.uiuc.edu/Research/vmd/current/ug/node107.html
http://www.ks.uiuc.edu/Research/vmd/

GromacsWrapper Documentation, Release 0.1.12

Example

Start a VMD server and connect:

from vmd.control import *
VMD = server()
VMD.command(’molecule new load 1AKE’)

or start an interactive Tcl session connected to a running VMD server process:

interactive(host)
asyncore.loop() # necessary

See VMD Tcl Text Commands for all available commands.

1.5.3 edPDB — Simple processing of PDB files

The edPDB module contains extensions to the Biopython Bio.PDB module that help with editing PDB files in
preparation for molecular dynamics simulations.

This module is completely independent from gromacs and distributed with GromacsWrapper as a convenience. As
all other code, it is in a steady state of development and flux...

The edPDB module is distributed under the Biopython licence .

Contents:

edPDB – editing PDB files

A collection of python snippets to quickly edit pdb files. This is typically used for setting up system for MD simula-
tions.

Typically, one instantiates a edPDB.cbook.PDB object (which can also be accessed as edPDB.PDB) and uses the
methods defined on it to write new pdb files.

The cook book edPDB.cbook contains some more specialized functions that are not integrated into PDB yet; study
the source and use them as examples.

Built on top of Bio.PDB from Biopython.

Modules

edPDB.cbook Cook-book with short functions that show how to implement basic functionality.

edPDB.xpdb Extensions to the Bio.PDB class.

edPDB.selections Selections that can be used to extract parts of a pdb.

Future plans

Eventually using this module should become as intuitive as grep, sed and cat of pdb files.

1.5. Auxiliary modules 183

http://www.tcl.tk/man/
http://www.ks.uiuc.edu/Research/vmd/current/ug/node107.html
http://biopython.org
http://www.rcsb.org/pdb/static.do?p=file_formats/pdb/index.html
http://www.biopython.org/DIST/LICENSE
http://biopython.org

GromacsWrapper Documentation, Release 0.1.12

edPDB.cbook – Recipes for editing PDB files

The cook book contains short python functions that demonstrate how to implement basic PDB editing functionality.
They do not do exhaustive error checking and might have to be altered for your purpose.

class PDB(pdbname)
Class that represents a PDB file and allows extractions of interesting parts.

The structure itself is never changed. In order to extract sub-parts of a structure one selects these parts and writes
them as new pdb file.

The advantage over a simple grep is that you will be able to read any odd pdb file and you will also able to do
things like extract_protein() or extract_lipids().

Load structure from file pdbname.

extract_lipids(filename, lipid_resnames=’POPC|POPG|POPE|DMPC|DPPE|DOPE’, **kwargs)
Write a pdb file with the lipids extracted.

Note that resnames are also tried truncated to the first three characters, which means that POPE and POPG
are identical and cannot be distinguished.

extract_notprotein(filename, **kwargs)
Write a pdb file without any amino acids extracted.

extract_protein(filename, **kwargs)
Write a pdb file with the protein (i.e. all amino acids) extracted.

extract_resnames(filename, resnames, **kwargs)
Write a pdb file with resnames extracted.

residues_by_resname(resnames, **kwargs)
Return a list of BioPDB residues that match resnames.

resnames can be a string or a list.

residues_by_selection(selection)
Return a list of BioPDB residues that are selected by selection.

selection must be BioPDB.PDB.PDBIO.Select instance (see for example
edPDB.xpdb.ProteinSelect).

write(filename, **kwargs)
Write pdbfile which includes or excludes residues.

Arguments

filename output pdb filename

inclusions list of residues to include

exclusions list of residues to exclude

chain relabel the selection with a new chain identifier

Residues must be BioPDB residues as returned by, for instance,
residues_by_resname().

Note: Currently only either inclusions or exclusions can be supplied, not both.

align_ligand(protein_struct, ligand_struct, ligand_resname, output=’ligand_aligned.pdb’)
Align a ligand to the same ligand in a protein, based on the heavy atoms.

This is useful when a new ligand was generated with hydrogens but the position in space changed.

Arguments

184 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.12

protein_struct protein + ligand pdb

ligand_struct ligand pdb

ligand_resname residue name of the ligand in the file protein_struct

ligand_aligned output

Returns RMSD of the fit in Angstroem.

Warning: Assumes only heavy atoms in PDB (I think... check source!)

remove_overlap_water(pdbname, output, ligand_resname, distance=3.0, water=’SOL’, **kwargs)
Remove water (SOL) molecules overlapping with ligand.

Arguments

pdbname pdb file that contains the ligand and the water

output pdb output filename

ligand_resname name of the ligand residue(s) in the pdb

distance overlap is defined as a centre-centre distance of any solvent OW atom with any ligand
atom of less than distance

Note: The residue and atom numbering will be fairly meaningless in the final PDB because it wraps at 100,000
or 10,000.

Also make sure that there are either consistent chain identifiers or none (blank) because otherwise the residue
blocks migh become reordered. (This is due to the way the Bio.PDB.PDBIO writes files.)

edPDB.xpdb – Extensions to Bio.PDB

Extensions to Bio.PDB, such as handling of large pdb files and some useful selections (see edPDB.selections).

Partly published on http://biopython.org/wiki/Reading_large_PDB_files

License: like Biopython

Module content

class SloppyStructureBuilder(verbose=False)
Cope with resSeq < 10,000 limitation by just incrementing internally.

Solves the follwing problem with Bio.PDB.StructureBuilder.StructureBuilder: Q: What’s
wrong here??

Some atoms or residues will be missing in the data structure. WARNING: Residue (‘ ‘, 8954, ‘ ‘)
redefined at line 74803. PDBConstructionException: Blank altlocs in duplicate residue SOL (‘ ‘,
8954, ‘ ‘) at line 74803.

A: resSeq only goes to 9999 –> goes back to 0 (PDB format is not really good here)

Warning: H and W records are probably not handled yet (don’t have examples to test)

class SloppyPDBIO(use_model_flag=0)
PDBIO class that can deal with large pdb files as used in MD simulations.

•resSeq simply wrap and are printed modulo 10,000.

1.5. Auxiliary modules 185

http://biopython.org/wiki/Reading_large_PDB_files

GromacsWrapper Documentation, Release 0.1.12

•atom numbers wrap at 99,999 and are printed modulo 100,000

@param use_model_flag: if 1, force use of the MODEL record in output. @type use_model_flag: int

class AtomGroup(atoms=None)

get_structure(pdbfile, pdbid=’system’)

write_pdb(structure, filename, **kwargs)
Write Bio.PDB molecule structure to filename.

Arguments

structure Bio.PDB structure instance

filename pdb file

selection Bio.PDB.Selection

exclusions list of residue instances that will not be included

inclusions list of residue instances that will be included

chain set the chain identifier for all atoms written; this can be useful to simply to erase all chain
ids by setting it to ‘ ‘

Typical use is to supply a list of water molecules that should not be written or a ligand that should be include.

Note: Currently only one of selection, *exclusions or inclusions is supported.

edPDB.selections — Selections

Extensions to Bio.PDB, some useful selections.

Partly published on http://biopython.org/wiki/Reading_large_PDB_files

License: like Biopython

Selection classes

Provide an instance to PDBIO to select a subset of a structure or use it with residues_by_selection() to
obtain a list of residues.

class ResnameSelect(resnames, complement=False)
Select all atoms that match resnames.

Supply a resname, e.g. ‘SOL’ or ‘PHE’ or a list.

class ResidueSelect(residues, complement=False)
Select all atoms that are in the residues list.

Supply a list of Bio.PDB residues for the search.

class NotResidueSelect(residues, complement=False)
Select all atoms that are not in the residues list.

(Same as ResidueSelect(residues, complement=True).)

Supply a list of Bio.PDB residues for the search.

class ProteinSelect(complement=False)
Select all amino acid residues.

186 Chapter 1. Contents

http://biopython.org/wiki/Reading_large_PDB_files

GromacsWrapper Documentation, Release 0.1.12

class NotProteinSelect(complement=False)
Select all non-aminoacid residues.

Supply a list of Bio.PDB residues for the search.

Selection functions

Functions always act on a structure and return a list of residues.

residues_by_resname(structure, resnames)
Return a list of residue instances that match resnames.

resnames can be a single string or a list of strings.

residues_by_selection(structure, selection)
General residue selection: supply a Bio.PDB.PDBIO.Select instance.

find_water(structure, ligand, radius=3.0, water=’SOL’)
Find all water (SOL) molecules within radius of ligand.

Arguments

structure Bio.PDB structure of system with water

ligand [list] Bio.PDB list of atoms of the ligand (Bio.PDB.Atom.Atom instances)

radius [float] Find waters for which the ligand-atom - OW distance is < radius [3.0]

water [string] resname of a water molecule [SOL]

Returns list of residue instances

Utility functions

canonical(resname)
Return canonical representation of resname.

space stripped and upper case

PROTEIN_RESNAMES
List of residue names that determine what is recognized as a protein with ProteinSelect. Can be extended
with non-standard residues.

Helper modules

edPDB.utilities – Helper functions and classes

The module defines some convenience functions and classes that are used in other modules

Functions Functions that improve list processing and which do not treat strings as lists:

iterable(obj)
Returns True if obj can be iterated over and is not a string.

asiterable(obj)
Returns obj so that it can be iterated over; a string is not treated as iterable

1.5. Auxiliary modules 187

GromacsWrapper Documentation, Release 0.1.12

Configure logging for edPDB analysis.

Import this module if logging is desired in application code.

See Also:

Bio.PDB in Biopython edPDB is built on top of the great work done in the Bio.PDB module

pdbcat Andrew Dahlke’s pdbcat tools might also be a useful alternative if you prefer shell to python.

1.5.4 staging — Staging of input/output files on a queuing system

The staging module provides a framework to run python scripts easily through a queuing system that requires
copying of files to the scratch directory on compute nodes (“staging”). Instead of submitting a shell script to the
queuing system, one uses a python script that imports the module and instantiates a Job class that contains methods
to manage staging.

staging — Staging module overview

The ‘staging’ module provides a framework to run python scripts easily through a queuing system that requires copying
of files to the scratch directory on compute nodes.

Load the appropriate submodule at the of the script. Currently available submodules are:

staging.SunGridEngine Use the staging.SunGridEngine.Job class when running under Sun Grid En-
gine.

staging.Local Runs the job without any staging.

Example

from staging.SunGridEngine import Job

job = Job(inputfiles=dict(psf = ’inp/apo.psf’,
dcd = ’trj/prod.dcd’),

outputfiles=dict(dx = ’*.dx’, pickle = ’*.pickle’))

job.stage() # copy files to staging directory, creating dirs

your python script here...
access all filenames as job.filenames[<KEY>]

job.unstage() # copies files backs and creates dirs as needed
job.cleanup() # removes stage dir, careful!

staging.SunGridEngine — staging class for SunGridEngine

Primitive framework for staging jobs in Sun Grid Engine via a customized Job class.

Example python submission script

Write the SGE script like this:

188 Chapter 1. Contents

http://biopython.org
http://www.ks.uiuc.edu/Development/MDTools/pdbcat/
http://www.ks.uiuc.edu/Development/MDTools/pdbcat/
http://gridengine.sunsource.net/

GromacsWrapper Documentation, Release 0.1.12

#!/usr/bin/env python
#$ -N bulk
#$ -S /usr/bin/python
#$ -v PYTHONPATH=/home/oliver/Library/python-lib
#$ -v LD_LIBRARY_PATH=/opt/intel/cmkl/8.0/lib/32:/opt/intel/itc60/slib:/opt/intel/ipp41/ia32_itanium/sharedlib:/opt/intel/ipp41/ia32_itanium/sharedlib/linux32:/opt/intel/fc/9.0/lib:/opt/intel/cc/9.0/lib
#$ -r n
#$ -j y
The next line is IMPORTANT when you are using the default for Job(startdir=None)
#$ -cwd

from staging.SunGridEngine import Job

job = Job(inputfiles=dict(psf = ’inp/crbp_apo.psf’,
dcd = ’trj/rmsfit_1opa_salt_ewald_shake_10ang_prod.dcd’),

outputfiles=dict(dx = ’*.dx’, pickle = ’*.pickle’),
variables=dict(normalize = True, ...))

job.stage()
F = job.filenames # use F[key] to reference filenames from inputfiles or outputfiles
V = job.variables # and V[key] for the variables

your python script here...
print "psf: %(psf)s dcd: %(dcd)" % F
print "normalize = %(normalize)s" % V

job.unstage()
job.cleanup() # removes stage dir, careful!

Description of the Job class

class Job(*args, **kwargs)
The Job class encapsulates the SGE job and allows for clean staging and unstaging.

Set up the Job:

job = Job(inputfiles=dict(...),outputfiles=dict(...),variables=dict(...),**kwargs)

inputfiles and outputfiles are dictionaries with arbitrary keys; each item is a path to a file relative to the startdir
(which by default is the directory from which the SGE job starts — use the #$ -cwd flag!). If the files are not
relative to the start dir then new directories are constructed under the stage dir; in this instance it uis important
that the user script only uses the filenames in Job.filenames: These have the proper paths of the local
(staged) files for the script to operate on.

With

job.stage()

inputfiles are copied to the stagedir on the node’s scratch dir and sub directories are created as necessary;
directories mentioned as part of the outputfiles are created, too.

job.unstage()

1.5. Auxiliary modules 189

GromacsWrapper Documentation, Release 0.1.12

copies back all files mentioned in output files (again, use directories as part of the path as necessary) and
create the directories in the startdir if needed. For the outputfiles one can also use shell-style glob patterns, e.g.
outfiles = {’all_dcd’: ’*.dcd’, ’last_data’:’*[5-9].dat’}

Sensible defaults are automatically selected for startdir (cwd) and stagedir
(/scratch/USER/JOB_NAME.JOB_ID).

If the script is not run through SGE (i.e. the environment variable JOB_NAME is not set) then the script is run
without staging; this is pretty much equivalent to using

from staging.Local import Job

(i.e. using the staging.Local.Job class).

Attributes

input inputfiles dict (relative to startdir or absolute)

output outputfiles dict (relative to startdir or absolute, can contain globs)

filenames merged dict of input and output, pointing to staged files

variables variables dict

Methods

stage() setup job on the nodes in stagedir

unstage() retrieve results to startdir

cleanup() remove all files on the node (rm -rf stagedir)

Set up SGE job.

Arguments

inputfiles dict of input files (with relative path to startdir); globs are not supported.

outputfiles dict of result files or glob patterns (relative to stagedir == relative to startdir)

variables key/value pairs that can be used in the script as Job.variables[key]

startdir path to the directory where the input can be found (must be nfs-mounted on node)

stagedir local scratch directory on node; all input files are copied there. The default should be
ok.

JOB_NAME unique identifier (only set this if this NOT submitted through the Gridengine
queuing system AND if the files should be copied to a scratch disk (i.e. staging proceeds as
it would for a SGE-submitted job).)

SGE_TASK_ID fake a task id (use with JOB_NAME)

cleanup()
Remove stage dir

save(filename)
Save the Job() as a pickled file.

Restore with

import staging.SunGridengine
import cPickle
job = cPickle.load(open(<filename>,’r’))

190 Chapter 1. Contents

http://docs.python.org/library/functions.html#input

GromacsWrapper Documentation, Release 0.1.12

stage()
Copy all input files to the scratch directory.

unstage()
Copy results back. Shell-style glob patterns are allowed.

Helper functions for building job arrays

getline_from_arraylist(filename=None, ENVNAME=’ARRAYLIST’, default=’arraylist.txt’)
Read a list of values from filename and return the line that corresponds to the current SGE_TASK_ID.

line = get_line_from_arraylist(filename=None,ENVNAME=’ARRAYLIST’,default=”arraylist.txt”)

fields will be different depending on the value of SGE_TASK_ID (set by SunGridengine). The lines are simply
numbered consecutively.

Arguments

filename name of the arraylist file

ENVNAME try to get filename from environment variable if filename is not set

default if all fails, try this as a default filename

File format:

comment lines are ignored as are whitespace lines
only the first column is read; the internal numbering starts at 1
line1 ... <---- task id 1
line2 ... <---- task id 2
more comments, they are NOT counted for the task id
line3 ... <---- task id 3
...

Ignores white space lines and lines starting with #. Lines are stripped of left and right white space.

get_fields_from_arraylist(**kwargs)
Read a list of values from filename and return the line that corresponds to the current SGE_TASK_ID.

get_line_from_arraylist(filename=None,ENVNAME=’ARRAYLIST’,default=”arraylist.txt”) ->
fields

fields will be different depending on the value of SGE_TASK_ID (set by SunGridengine). The lines are simply
numbered consecutively.

See getline_from_arraylist() for more details.

get_value_from_arraylist(index=0, **kwargs)
Get field[index] of the entry in the array list corresponding to SGE_TASK_ID.

See get_fields_from_arraylist() for details.

staging.Local — staging class for running local jobs

Ersatz framework for running a staged script without actually doing any staging.

Simply replace

from staging.SunGridEngine import Job

1.5. Auxiliary modules 191

GromacsWrapper Documentation, Release 0.1.12

with

from staging.Local import Job

in the python run script (see staging.SunGridEngine for an example script).

Description of the Job class

class Job(*args, **kwargs)
Job class that doesn’t do anything but provides parameters as the ‘real’ classes do.

job = Job(inputfiles=<dict>,outputfiles=<dict>,variables=<dict>,startdir=<PWD>)

save(filename)
Save the Job() as a pickled file.

Restore with

import staging.SunGridengine import cPickle job = cPickle.load(open(<filename>,’r’))

1.6 Alternatives to GromacsWrapper

GromacsWrapper is simplistic; in particular it does not directly link to the Gromacs libraries but relies on python
wrappers to call gromacs tools. Some people find this very crude (the author included). Other people have given
more thought to the problem and you are encouraged to see if their efforts speed up your work more than does
GromacsWrapper.

pymacs (Daniel Seeliger) pymacs is a python module for dealing with structure files and trajectory data from the
GROMACS molecular dynamics package. It has interfaces to some gromacs functions and uses gromacs rou-
tines for command line parsing, reading and writing of structure files (pdb,gro,...) and for reading trajectory
data (only xtc at the moment). It is quite useful to write python scripts for simulation setup and analysis that can
be combined with other powerful python packages like numpy, scipy or plotting libraries like pylab. It has an
intuitive data structure (Model –> Chain –> Molecule –> Atom) and allows modifications at all levels like

• Changing of atom, residue and chain properties (name, coordinate, b-factor,...

• Deleting and inserting atoms, residues, chains

• Straightforward selection of structure subsets

• Structure building from sequence

• Handling gromacs index files

Gromacs XTC Library Version 1.1 of the separate xtc/trr library contains example code to access a Gromacs trajec-
tory from python. It appears to be based on grompy (also see below).

various implementations of python wrappers See the discussion on the gmx-developers mailinglist: check the
thread [gmx-developers] Python interface for Gromacs

grompy (Martin Hoefling, Roland Schulz) uses ctypes to wrap libgmx:

“Here’s a bunch of code I wrote to wrap libgmx with ctypes and make use of parts of gromacs
functionality. My application for this was the processing of a trajectories using gromac’s pbc removal
and fitting routines as well as reading in index groups etc. It’s very incomplete atm and also focused
on wrapping libgmx with all gromacs types and definitions...

... so python here feels a bit like lightweight c-code glueing together gromacs library functions :-)

192 Chapter 1. Contents

http://www.mpibpc.mpg.de/groups/de_groot/dseelig/pymacs.html
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003179.html
http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html
http://docs.python.org/library/ctypes.html

GromacsWrapper Documentation, Release 0.1.12

The attached code lacks a bit of documentation, but I included a test.py as an example using it.”

Roland Schulz added code:

“I added a little bit wrapper code to easily access the atom information in tpx. I attached the version.
It is backward compatible ...”

A working grompy tar ball (with Roland’s enhancements) is cached at gmane.org.

LOOS (Grossfield lab at the University of Rochester) The idea behind LOOS (Lightweight Object-Oriented Struc-
ture library) is to provide a lightweight C++ library for analysis of molecular dynamics simulations. This
includes parsing a number of PDB variants, as well as the native system description and trajectory formats for
CHARMM, NAMD, and Amber. LOOS is not intended to be an all-encompassing library and it is primarily
geared towards reading data in and processing rather than manipulating the files and structures and writing them
out.

The LOOS documentation is well written and comprehensive and the code is published under the GPL.

VMD (Schulten lab at UIUC) VMD is a great analysis tool; the only downside is that (at the moment) trajectories
have to fit into memory. In some cases this can be circumvented by reading a trajectory frame by frame using
the bigdcd script (which might also work for Gromacs xtcs).

MDAnalysis (N. Michaud-Agrawal, E. J. Dennning, and O. Beckstein) Reads various trajectories (dcd, xtc, trr)
and makes coordinates available as numpy arrays. It also has a fairly sophisticated selection language, simi-
lar to Charmm or VMD.

Please let me know of other efforts so that I can add them here. Thanks.

1.6. Alternatives to GromacsWrapper 193

http://article.gmane.org/gmane.science.biology.gromacs.devel/1185
http://loos.sourceforge.net
http://membrane.urmc.rochester.edu/Grossfield_Lab/Welcome.html
http://loos.sourceforge.net/Docs/
http://www.gnu.org/licenses/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/
http://www.ks.uiuc.edu/Research/vmd/script_library/scripts/bigdcd/
http://mdanalysis.googlecode.com
http://numpy.scipy.org
http://www.charmm.org
http://www.ks.uiuc.edu/Research/vmd/
http://sbcb.bioch.ox.ac.uk/oliver/

GromacsWrapper Documentation, Release 0.1.12

194 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• Index

• Module Index

• Search Page

195

GromacsWrapper Documentation, Release 0.1.12

196 Chapter 2. Indices and tables

BIBLIOGRAPHY

[Allen2009] W. J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Analysis
Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30, 1952-1958.

[Allen2009] W. J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Analysis
Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

197

GromacsWrapper Documentation, Release 0.1.12

198 Bibliography

MODULE INDEX

E
edPDB, 183
edPDB.cbook, 183
edPDB.log, 188
edPDB.selections, 186
edPDB.utilities, 187
edPDB.xpdb, 185

G
gromacs, 7
gromacs.analysis, 158
gromacs.analysis.collections, 165
gromacs.analysis.core, 160
gromacs.analysis.plugins, 166
gromacs.analysis.plugins.dist, 175
gromacs.analysis.plugins.gridmatmd, 177
gromacs.cbook, 130
gromacs.config, 14
gromacs.core, 10
gromacs.formats, 17
gromacs.qsub, 149
gromacs.run, 156
gromacs.setup, 143
gromacs.tools, 24, 27
gromacs.utilities, 21

N
numkit.fitting, 178
numkit.integration, 181
numkit.observables, 181
numkit.timeseries, 180

S
staging, 188
staging.Local, 191
staging.SunGridEngine, 188

V
vmd, 182
vmd.control, 183

199

GromacsWrapper Documentation, Release 0.1.12

200 Module Index

INDEX

Symbols
__add__() (gromacs.analysis.plugins.gridmatmd.Grid2D

method), 178
__call__() (gromacs.core.Command method), 11
__del__() (gromacs.tools.GromacsCommandMultiIndex

method), 25, 28
__div__() (gromacs.analysis.plugins.gridmatmd.Grid2D

method), 178
__iter__() (gromacs.analysis.plugins.dist.GdistData

method), 177
__mul__() (gromacs.analysis.plugins.gridmatmd.Grid2D

method), 178
__plugin_classes__ (in module gro-

macs.analysis.plugins), 175
__plugins__ (in module gromacs.analysis.plugins), 175
__sub__() (gromacs.analysis.plugins.gridmatmd.Grid2D

method), 178
_apply_all() (gromacs.analysis.core.Simulation method),

163
_fake_multi_ndx() (gro-

macs.tools.GromacsCommandMultiIndex
method), 24, 27

_hostname (gromacs.qsub.Manager attribute), 153
_qscript (gromacs.qsub.Manager attribute), 153
_register_hook() (gromacs.analysis.core.Worker

method), 165
_scratchdir (gromacs.qsub.Manager attribute), 153
_setup_MD() (in module gromacs.setup), 148
_walltime (gromacs.qsub.Manager attribute), 154

A
A_gridcalc (class in gromacs.tools), 31
A_ri3dc (class in gromacs.tools), 85
activate_subplot() (in module gromacs.utilities), 23
add_mdp_includes() (in module gromacs.cbook), 137
add_plugin() (gromacs.analysis.core.Simulation method),

162
add_plugin() (gromacs.analysis.Simulation method), 159
align_ligand() (in module edPDB.cbook), 184
all_frames (gromacs.cbook.Frames attribute), 133
amino_acid_codes (in module gromacs.utilities), 24

Anadock (class in gromacs.tools), 73
analyze() (gromacs.analysis.core.Simulation method),

163
analyze() (gromacs.analysis.Simulation method), 160
analyze_all() (gromacs.analysis.core.Simulation method),

163
anyopen() (in module gromacs.utilities), 22
array (gromacs.formats.XVG attribute), 18
array() (gromacs.qsub.QueuingSystem method), 151
array_flag() (gromacs.qsub.QueuingSystem method), 151
asiterable() (in module edPDB.utilities), 187
asiterable() (in module gromacs.utilities), 23
asQuantityWithError() (numkit.observables.QuantityWithError

static method), 182
AtomGroup (class in edPDB.xpdb), 186
AttributeDict (class in gromacs.utilities), 22
AutoCorrectionWarning, 10
autocorrelation_fft() (in module numkit.timeseries), 180

B
BadParameterWarning, 10

C
canonical() (in module edPDB.selections), 187
cat() (gromacs.qsub.Manager method), 154
cat() (in module gromacs.cbook), 131
center_fit() (gromacs.cbook.Transformer method), 133
check_file() (gromacs.analysis.core.Simulation method),

163
check_file_exists() (gromacs.utilities.FileUtils method),

21
check_mdpargs() (in module gromacs.setup), 148
check_mdrun_success() (in module gromacs.run), 158
check_plugin_name() (gromacs.analysis.core.Simulation

method), 163
check_success() (gromacs.run.MDrunner method), 156
cleanup() (gromacs.cbook.Frames method), 133
cleanup() (staging.SunGridEngine.Job method), 190
Collection (class in gromacs.analysis.collections), 165
COM (class in gromacs.analysis.plugins), 170
COM.COM (class in gromacs.analysis.plugins), 170

201

GromacsWrapper Documentation, Release 0.1.12

combine() (gromacs.cbook.IndexBuilder method), 140
Command (class in gromacs.core), 10
command_name (gromacs.core.Command attribute), 12
commandline() (gromacs.core.GromacsCommand

method), 13
commandline() (gromacs.run.MDrunner method), 156
communicate() (gromacs.core.PopenWithInput method),

14
CONC_WATER (in module gromacs.setup), 148
configdir (in module gromacs.config), 14
convert_aa_code() (in module gromacs.utilities), 24
copy() (numkit.observables.QuantityWithError method),

182
create_portable_topology() (in module gromacs.cbook),

136
current_plugin (gromacs.analysis.core.Simulation at-

tribute), 163
CysAccessibility (class in gromacs.analysis.plugins), 166
CysAccessibility.CysAccessibility (class in gro-

macs.analysis.plugins), 166

D
deepcopy() (numkit.observables.QuantityWithError

method), 182
default_extension (gromacs.utilities.FileUtils attribute),

22
delete_frames() (gromacs.cbook.Frames method), 133
detect_queuing_system() (in module gromacs.qsub), 153
Dihedrals (class in gromacs.analysis.plugins), 170
Dihedrals.Dihedrals (class in gromacs.analysis.plugins),

170
dist (gromacs.analysis.plugins.dist.Mindist attribute), 176
Distances (class in gromacs.analysis.plugins), 168
Distances.Distances (class in gromacs.analysis.plugins),

168
Do_dssp (class in gromacs.tools), 119

E
edges (gromacs.analysis.plugins.dist.Mindist attribute),

176
edit_mdp() (in module gromacs.cbook), 137, 141
edit_txt() (in module gromacs.cbook), 142
Editconf (class in gromacs.tools), 88
edPDB (module), 183
edPDB.cbook (module), 183
edPDB.log (module), 188
edPDB.selections (module), 186
edPDB.utilities (module), 187
edPDB.xpdb (module), 185
em_schedule() (in module gromacs.setup), 145
Eneconv (class in gromacs.tools), 95
Energy (class in gromacs.analysis.plugins), 172
Energy.Energy (class in gromacs.analysis.plugins), 172
energy_minimize() (in module gromacs.setup), 145

environment variable
JOB_NAME, 190
PATH, 12, 15, 157
SGE_TASK_ID, 191

error (gromacs.formats.XVG attribute), 18
errorbar() (gromacs.formats.XVG method), 18
extract() (gromacs.cbook.Frames method), 133
extract_lipids() (edPDB.cbook.PDB method), 184
extract_notprotein() (edPDB.cbook.PDB method), 184
extract_protein() (edPDB.cbook.PDB method), 184
extract_resnames() (edPDB.cbook.PDB method), 184

F
f_factory() (numkit.fitting.FitFunc method), 179
failuremodes (gromacs.core.GromacsCommand at-

tribute), 13
filename() (gromacs.utilities.FileUtils method), 22
FileUtils (class in gromacs.utilities), 21
find_first() (in module gromacs.utilities), 23
find_water() (in module edPDB.selections), 187
fit() (gromacs.cbook.Transformer method), 134
fit() (numkit.fitting.FitFunc method), 179
FitExp (class in numkit.fitting), 180
FitExp2 (class in numkit.fitting), 180
FitFunc (class in numkit.fitting), 179
FitLin (class in numkit.fitting), 180
flag() (gromacs.qsub.QueuingSystem method), 151
format (gromacs.formats.NDX attribute), 20
Frames (class in gromacs.cbook), 132

G
G_anaeig (class in gromacs.tools), 48
G_analyze (class in gromacs.tools), 66
G_angle (class in gromacs.tools), 43
G_bond (class in gromacs.tools), 84
G_bundle (class in gromacs.tools), 116
G_chi (class in gromacs.tools), 126
G_cluster (class in gromacs.tools), 102
G_clustsize (class in gromacs.tools), 97
G_confrms (class in gromacs.tools), 68
G_count (class in gromacs.tools), 80
G_covar (class in gromacs.tools), 87
G_current (class in gromacs.tools), 60
G_density (class in gromacs.tools), 52
G_densmap (class in gromacs.tools), 38
G_dielectric (class in gromacs.tools), 62
G_dih (class in gromacs.tools), 121
G_dipoles (class in gromacs.tools), 99
G_disre (class in gromacs.tools), 65
G_dist (class in gromacs.tools), 109
G_dyndom (class in gromacs.tools), 123
G_enemat (class in gromacs.tools), 51
G_energy (class in gromacs.tools), 96
G_filter (class in gromacs.tools), 32

202 Index

GromacsWrapper Documentation, Release 0.1.12

G_flux (class in gromacs.tools), 61
G_gyrate (class in gromacs.tools), 37
G_h2order (class in gromacs.tools), 77
G_hbond (class in gromacs.tools), 72
G_helix (class in gromacs.tools), 90
G_helixorient (class in gromacs.tools), 36
G_lie (class in gromacs.tools), 100
G_mdmat (class in gromacs.tools), 93
G_mindist (class in gromacs.tools), 82
G_morph (class in gromacs.tools), 125
G_msd (class in gromacs.tools), 64
G_nmeig (class in gromacs.tools), 53
G_nmens (class in gromacs.tools), 41
G_nmtraj (class in gromacs.tools), 83
G_order (class in gromacs.tools), 117
G_polystat (class in gromacs.tools), 114
G_potential (class in gromacs.tools), 109
G_principal (class in gromacs.tools), 70
G_rama (class in gromacs.tools), 45
G_rdf (class in gromacs.tools), 74
G_ri3dc (class in gromacs.tools), 110
G_rms (class in gromacs.tools), 59
G_rmsf (class in gromacs.tools), 129
G_rotacf (class in gromacs.tools), 106
G_saltbr (class in gromacs.tools), 118
G_sas (class in gromacs.tools), 82
G_sdf (class in gromacs.tools), 75
G_sgangle (class in gromacs.tools), 46
G_sham (class in gromacs.tools), 50
G_sorient (class in gromacs.tools), 127
G_spatial (class in gromacs.tools), 28
G_spol (class in gromacs.tools), 107
G_tcaf (class in gromacs.tools), 56
G_traj (class in gromacs.tools), 78
G_vanhove (class in gromacs.tools), 104
G_velacc (class in gromacs.tools), 111
G_wham (class in gromacs.tools), 103
G_zcoord (class in gromacs.tools), 40
GdistData (class in gromacs.analysis.plugins.dist), 176
Genbox (class in gromacs.tools), 58
Genconf (class in gromacs.tools), 124
generate_submit_array() (in module gromacs.qsub), 152
generate_submit_scripts() (in module gromacs.qsub), 152
Genion (class in gromacs.tools), 49
Genrestr (class in gromacs.tools), 34
get() (gromacs.formats.NDX method), 20
get() (gromacs.qsub.Manager method), 154
get_dir() (gromacs.qsub.Manager method), 154
get_fields_from_arraylist() (in module stag-

ing.SunGridEngine), 191
get_lipid_vdwradii() (in module gromacs.setup), 148
get_ndx_groups() (in module gromacs.cbook), 141
get_plugin() (gromacs.analysis.core.Simulation method),

163

get_status() (gromacs.qsub.Manager method), 154
get_structure() (in module edPDB.xpdb), 186
get_template() (in module gromacs.config), 16
get_templates() (in module gromacs.config), 17
get_value_from_arraylist() (in module stag-

ing.SunGridEngine), 191
get_version() (in module gromacs), 10
get_version_tuple() (in module gromacs), 10
get_volume() (in module gromacs.cbook), 135, 136
getline_from_arraylist() (in module stag-

ing.SunGridEngine), 191
gmx_extra_tools (in module gromacs.config), 15
gmx_resid() (gromacs.cbook.IndexBuilder method), 140
gmx_tool_groups (in module gromacs.config), 15
gmx_tools (in module gromacs.config), 15
Gmxcheck (class in gromacs.tools), 81
gmxdoc (gromacs.core.GromacsCommand attribute), 13
Gmxdump (class in gromacs.tools), 76
Grid2D (class in gromacs.analysis.plugins.gridmatmd),

178
GridMAT_MD (class in gromacs.tools), 26, 98
GridMAT_MD.GridMAT_MD (class in gromacs.tools),

26, 98
GridMatData (class in gro-

macs.analysis.plugins.gridmatmd), 177
GridMatMD (class in gro-

macs.analysis.plugins.gridmatmd), 177
GRO (class in gromacs.formats), 21
gromacs (module), 7
gromacs.analysis (module), 158
gromacs.analysis.collections (module), 165
gromacs.analysis.core (module), 160
gromacs.analysis.plugins (module), 166
gromacs.analysis.plugins.dist (module), 175
gromacs.analysis.plugins.gridmatmd (module), 177
gromacs.cbook (module), 130
gromacs.config (module), 14
gromacs.core (module), 10
gromacs.formats (module), 17
gromacs.qsub (module), 149
gromacs.run (module), 156
gromacs.setup (module), 143
gromacs.tools (module), 24, 27
gromacs.utilities (module), 21
GromacsCommand (class in gromacs.core), 12
GromacsCommandMultiIndex (class in gromacs.tools),

24, 27
GromacsError, 9
GromacsFailureWarning, 9
GromacsImportWarning, 10
GromacsValueWarning, 10
Grompp (class in gromacs.tools), 42
grompp_qtot() (in module gromacs.cbook), 136, 138
groups (gromacs.formats.NDX attribute), 20

Index 203

GromacsWrapper Documentation, Release 0.1.12

H
has_arrays() (gromacs.qsub.QueuingSystem method),

151
has_plugin() (gromacs.analysis.core.Simulation method),

163
HelixBundle (class in gromacs.analysis.plugins), 167
HelixBundle.HelixBundle (class in gro-

macs.analysis.plugins), 167
help() (gromacs.core.Command method), 12
help() (gromacs.core.GromacsCommand method), 13
hist (gromacs.analysis.plugins.dist.Mindist attribute), 176
histogram() (gromacs.analysis.plugins.dist.Mindist

method), 176

I
imshow() (gromacs.analysis.plugins.gridmatmd.Grid2D

method), 178
imshow() (gromacs.analysis.plugins.gridmatmd.GridMatData

method), 178
imshow() (gromacs.analysis.plugins.gridmatmd.GridMatMD

method), 177
in_dir() (in module gromacs.utilities), 23
IndexBuilder (class in gromacs.cbook), 138
infix_filename() (gromacs.utilities.FileUtils method), 22
initial_values() (numkit.fitting.FitFunc method), 179
isMine() (gromacs.qsub.QueuingSystem method), 152
isSame() (numkit.observables.QuantityWithError

method), 182
iterable() (in module edPDB.utilities), 187
iterable() (in module gromacs.utilities), 23

J
Job (class in staging.Local), 192
Job (class in staging.SunGridEngine), 189
job_done() (gromacs.qsub.Manager method), 154
JOB_NAME, 190
join() (gromacs.formats.uniqueNDX method), 21

K
keep_protein_only() (gromacs.cbook.Transformer

method), 134

L
linfit() (in module numkit.fitting), 179
load_scripts (in module gromacs.config), 15
load_tools (in module gromacs.config), 15
local_get() (gromacs.qsub.Manager method), 154
log_RE (gromacs.qsub.Manager attribute), 155
logfilename (in module gromacs.config), 15
loglevel_console (in module gromacs.config), 15
loglevel_file (in module gromacs.config), 15
LowAccuracyWarning, 10, 181
Ls (class in gromacs.analysis.plugins), 174

Ls.Ls (class in gromacs.analysis.plugins), 174
Luck (class in gromacs.tools), 91

M
ma (gromacs.formats.XVG attribute), 18
Make_edi (class in gromacs.tools), 108
make_main_index() (in module gromacs.setup), 148
Make_ndx (class in gromacs.tools), 122
make_ndx_captured() (in module gromacs.cbook), 141
Manager (class in gromacs.qsub), 153
max (gromacs.formats.XVG attribute), 19
MD() (in module gromacs.setup), 147
MD_restrained() (in module gromacs.setup), 146
Mdrun (class in gromacs.tools), 25, 67
mdrun (gromacs.run.MDrunner attribute), 157
Mdrun_d (class in gromacs.tools), 57
MDrunner (class in gromacs.run), 156
MDrunnerMpich2Smpd (class in gromacs.run), 158
MDrunnerOpenMP (class in gromacs.run), 157
MDrunnerOpenMP64 (class in gromacs.run), 157
mean (gromacs.formats.XVG attribute), 19
midpoints (gromacs.analysis.plugins.dist.Mindist at-

tribute), 176
min (gromacs.formats.XVG attribute), 19
Mindist (class in gromacs.analysis.plugins.dist), 175
MinDistances (class in gromacs.analysis.plugins), 169
MinDistances.Distances (class in gro-

macs.analysis.plugins), 169
MissingDataError, 9
MissingDataWarning, 10
Mk_angndx (class in gromacs.tools), 92
mpicommand() (gromacs.run.MDrunner method), 157
mpiexec (gromacs.run.MDrunner attribute), 157

N
ncol (gromacs.formats.NDX attribute), 20
ndependent() (gromacs.qsub.Manager method), 155
NDX (class in gromacs.formats), 20
ndxlist (gromacs.formats.NDX attribute), 20
NotProteinSelect (class in edPDB.selections), 186
NotResidueSelect (class in edPDB.selections), 186
number_pdbs() (in module gromacs.utilities), 23
numkit.fitting (module), 178
numkit.integration (module), 181
numkit.observables (module), 181
numkit.timeseries (module), 180

O
openany() (in module gromacs.utilities), 22

P
parse() (gromacs.formats.XVG method), 19
parse_filename() (gromacs.analysis.plugins.gridmatmd.GridMatData

method), 178

204 Index

GromacsWrapper Documentation, Release 0.1.12

parse_ndxlist() (in module gromacs.cbook), 136, 140
ParseError, 9
PATH, 12, 15, 157
path (in module gromacs.config), 14
PDB (class in edPDB.cbook), 184
Pdb2gmx (class in gromacs.tools), 89
Pearson_r() (in module numkit.fitting), 179
plot() (gromacs.analysis.core.Simulation method), 163
plot() (gromacs.analysis.plugins.dist.Mindist method),

176
plot() (gromacs.analysis.Simulation method), 160
plot() (gromacs.formats.XVG method), 19
Plugin (class in gromacs.analysis.core), 164
plugin_name (gromacs.analysis.core.Plugin attribute),

164
plugindir() (gromacs.analysis.core.Simulation method),

163
plugindir() (gromacs.analysis.core.Worker method), 165
Popen() (gromacs.core.Command method), 12
Popen() (gromacs.core.GromacsCommand method), 13
PopenWithInput (class in gromacs.core), 14
posthook() (gromacs.run.MDrunner method), 157
prehook() (gromacs.run.MDrunner method), 157
PROTEIN_RESNAMES (in module edPDB.selections),

187
ProteinOnly (class in gromacs.analysis.plugins), 173
ProteinOnly.ProteinOnly (class in gro-

macs.analysis.plugins), 173
ProteinSelect (class in edPDB.selections), 186
Protonate (class in gromacs.tools), 33
put() (gromacs.qsub.Manager method), 155
putfile() (gromacs.qsub.Manager method), 155
Python Enhancement Proposals

PEP 0372, 4

Q
qscript_template (in module gromacs.config), 16
qscriptdir (in module gromacs.config), 16
qstat() (gromacs.qsub.Manager method), 154
qsub() (gromacs.qsub.Manager method), 155
QuantityWithError (class in numkit.observables), 181
queuing_systems (in module gromacs.qsub), 153
QueuingSystem (class in gromacs.qsub), 151

R
read() (gromacs.formats.GRO method), 21
read() (gromacs.formats.NDX method), 20
read() (gromacs.formats.XVG method), 19
realpath() (in module gromacs.utilities), 23
register() (gromacs.analysis.core.Plugin method), 164
remotepath() (gromacs.qsub.Manager method), 155
remoteuri() (gromacs.qsub.Manager method), 155
remove_legend() (in module gromacs.utilities), 23
remove_overlap_water() (in module edPDB.cbook), 185

residues_by_resname() (edPDB.cbook.PDB method),
184

residues_by_resname() (in module edPDB.selections),
187

residues_by_selection() (edPDB.cbook.PDB method),
184

residues_by_selection() (in module edPDB.selections),
187

ResidueSelect (class in edPDB.selections), 186
ResnameSelect (class in edPDB.selections), 186
RMSD (class in gromacs.analysis.plugins), 171
RMSD.RMSD (class in gromacs.analysis.plugins), 171
rmsd_backbone() (in module gromacs.cbook), 130
RMSF (class in gromacs.analysis.plugins), 171
RMSF.RMSF (class in gromacs.analysis.plugins), 171
rp() (gromacs.cbook.Transformer method), 135
run() (gromacs.analysis.core.Simulation method), 163
run() (gromacs.analysis.plugins.gridmatmd.GridMatMD

method), 177
run() (gromacs.analysis.Simulation method), 160
run() (gromacs.core.Command method), 12
run() (gromacs.core.GromacsCommand method), 13
run() (gromacs.run.MDrunner method), 157
run() (gromacs.tools.GromacsCommandMultiIndex

method), 24, 27
run_all() (gromacs.analysis.core.Simulation method), 163
run_check() (gromacs.run.MDrunner method), 157
run_frame() (gromacs.analysis.plugins.gridmatmd.GridMatMD

method), 177

S
save() (gromacs.analysis.plugins.gridmatmd.GridMatMD

method), 177
save() (staging.Local.Job method), 192
save() (staging.SunGridEngine.Job method), 190
savefig() (gromacs.analysis.core.Worker method), 165
set() (gromacs.formats.NDX method), 20
set() (gromacs.formats.XVG method), 19
set_correlparameters() (gromacs.formats.XVG method),

19
set_plugin() (gromacs.analysis.core.Simulation method),

163
set_plugin() (gromacs.analysis.Simulation method), 159
setup() (in module gromacs.config), 16
setup_MD() (gromacs.qsub.Manager method), 155
setup_posres() (gromacs.qsub.Manager method), 156
SGE_TASK_ID, 191
Sigeps (class in gromacs.tools), 29
simps_error() (in module numkit.integration), 181
Simulation (class in gromacs.analysis), 159
Simulation (class in gromacs.analysis.core), 162
simulation (gromacs.analysis.core.Plugin attribute), 164
size() (gromacs.formats.NDX method), 21
sizes (gromacs.formats.NDX attribute), 21

Index 205

GromacsWrapper Documentation, Release 0.1.12

SloppyPDBIO (class in edPDB.xpdb), 185
SloppyStructureBuilder (class in edPDB.xpdb), 185
solvate() (in module gromacs.setup), 144
stage() (staging.SunGridEngine.Job method), 190
staging (module), 188
staging.Local (module), 191
staging.SunGridEngine (module), 188
std (gromacs.formats.XVG attribute), 19
strip_water() (gromacs.cbook.Transformer method), 135
StripWater (class in gromacs.analysis.plugins), 173
StripWater.StripWater (class in gro-

macs.analysis.plugins), 173

T
tc (gromacs.formats.XVG attribute), 19
tcorrel() (in module numkit.timeseries), 180
templates (in module gromacs.config), 16
templatesdir (in module gromacs.config), 16
Timedelta (class in gromacs.utilities), 22
topdir() (gromacs.analysis.core.Simulation method), 163
topdir() (gromacs.analysis.core.Worker method), 165
topology() (in module gromacs.setup), 144
Tpbconv (class in gromacs.tools), 54
Trajectories (class in gromacs.analysis.plugins), 172
Trajectories.Trajectories (class in gro-

macs.analysis.plugins), 172
transform_args() (gromacs.core.Command method), 12
transform_args() (gromacs.core.GromacsCommand

method), 14
Transformer (class in gromacs.cbook), 133
trj_compact() (in module gromacs.cbook), 130
trj_fitandcenter() (in module gromacs.cbook), 130
trj_xyfitted() (in module gromacs.cbook), 130
Trjcat (class in gromacs.tools), 35
Trjconv (class in gromacs.tools), 44
Trjorder (class in gromacs.tools), 69

U
uniqueNDX (class in gromacs.formats), 21
unlink_f() (in module gromacs.utilities), 23
unlink_gmx() (in module gromacs.utilities), 23
unlink_gmx_backups() (in module gromacs.utilities), 23
unstage() (staging.SunGridEngine.Job method), 191
UsageWarning, 10

V
vdw_lipid_atom_radii (in module gromacs.setup), 149
vdw_lipid_resnames (in module gromacs.setup), 148
vmd (module), 182
vmd.control (module), 183

W
waitfor() (gromacs.qsub.Manager method), 156

Wheel (class in gromacs.tools), 115
withextsep() (in module gromacs.utilities), 23
Worker (class in gromacs.analysis.core), 164
worker (gromacs.analysis.core.Plugin attribute), 164
worker_class (gromacs.analysis.core.Plugin attribute),

164
worker_class (gromacs.analysis.plugins.COM attribute),

170
worker_class (gromacs.analysis.plugins.CysAccessibility

attribute), 167
worker_class (gromacs.analysis.plugins.Dihedrals at-

tribute), 170
worker_class (gromacs.analysis.plugins.Distances at-

tribute), 169
worker_class (gromacs.analysis.plugins.Energy at-

tribute), 172
worker_class (gromacs.analysis.plugins.HelixBundle at-

tribute), 168
worker_class (gromacs.analysis.plugins.Ls attribute), 174
worker_class (gromacs.analysis.plugins.MinDistances at-

tribute), 170
worker_class (gromacs.analysis.plugins.ProteinOnly at-

tribute), 174
worker_class (gromacs.analysis.plugins.RMSD at-

tribute), 172
worker_class (gromacs.analysis.plugins.RMSF attribute),

171
worker_class (gromacs.analysis.plugins.StripWater at-

tribute), 173
worker_class (gromacs.analysis.plugins.Trajectories at-

tribute), 172
write() (edPDB.cbook.PDB method), 184
write() (gromacs.formats.NDX method), 21
write() (gromacs.formats.XVG method), 20
write_pdb() (in module edPDB.xpdb), 186

X
X2top (class in gromacs.tools), 113
Xpm2ps (class in gromacs.tools), 101
XVG (class in gromacs.formats), 17

206 Index

	Contents
	README
	INSTALL
	Gromacs package
	Analysis
	Auxiliary modules
	Alternatives to GromacsWrapper

	Indices and tables
	Bibliography
	Module Index
	Index

