GromacsWrapper Documentation
Release 0.1.10

Oliver Beckstein

May 07, 2010

CONTENTS

1 Contents
1.. README e
1.2 INSTALL o e e e e
1.3 Gromacs package o e e e e e e e e e e e e e
L4 AnalysSiS . . . o o e e e e e e e e e e

1.5 Alternatives to GromacsWrapper

1.6 vmd —Remote Tcl commandsin VMD
1.7 edPDB — Simple processingof PDBfiles
1.8 staging — Staging of input/output files on a queuing system

2 Indices and tables

Bibliography

Module Index

Index

179

181

183

185

GromacsWrapper Documentation, Release 0.1.10

GromacsWrapper is a python package that wraps system calls to Gromacs tools into thin classes. This allows for
fairly seamless integration of the gromacs tools into python scripts. This is generally superior to shell scripts because
of python’s better error handling and superior data structures. It also allows for modularization and code re-use. In
addition, commands, warnings and errors are logged to a file so that there exists a complete history of what has been
done.

See INSTALL for download and installation instructions. Documentation is primarily provided through the python doc
strings (from which most of the online documentation is generated).

There is also auto-generated online source code documentation available and the source code itself is available in the
GromacsWrapper git repository.

Warning: Please be aware that this is alpha software that most definitely contains bugs. The API is not stable
and can change between releases.
It is your responsibility to ensure that you are running simulations with sensible parameters.

The package and the documentation are still in flux and any feedback, bug reports, suggestions and contributions are
very welcome. See the package README for contact details.

For other approaches to interfacing python and Gromacs see Alternatives to GromacsWrapper.

CONTENTS 1

http://www.gromacs.org
http://www.python.org
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/html/index.html
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/epydoc/index.html
http://github.com/orbeckst/GromacsWrapper
http://github.com/orbeckst/GromacsWrapper/issues
http://www.python.org
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.1.10

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 README

See INSTALL for installation instructions. Documentation is mostly provided through the python doc strings. See
Download and Availability for download instructions if the instructions in /NSTALL are not sufficient.

There is also auto-generated online source code documentation available. The source code is also available in the
GromacsWrapper git repository.

Please be aware that this is alpha software that most definitely contains bugs. It is your responsibility to ensure that
you are running simulations with sensible parameters.

1.1.1 License
The GromacsWrapper package is made available under the terms of the GNU Public License v3 (or any higher
version at your choice).

See the file COPYING for the licensing terms for all modules except the vmd module, which is made available under
the LGPL v3 (see COPYING and COPYING.LESSER).

1.1.2 Included Software

The distribution contains third party software that is copyrighted by the authors but distributed under licences com-
patible with this package license. Where permitted and necessary, software/files were modified to integrate with
GromacsWrapper.

In case of problems please direct error reports to Oliver Beckstein in the first instance as these bugs might not have
been present in the original software or files.

Included third party content:

GridMat-MD
* Grid-based Membrane Analysis Tool for use with Molecular Dynamics [Allen2009]
* version: 1.0.2
e license: GPL 3.0

e W. J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Analysis
Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

http://bevanlab.biochem.vt.edu/GridMAT-MD/

http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/html/index.html
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/epydoc/index.html
http://github.com/orbeckst/GromacsWrapper
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
mailto:oliver.beckstein@bioch.ox.ac.uk
http://bevanlab.biochem.vt.edu/GridMAT-MD/

GromacsWrapper Documentation, Release 0.1.10

odict.py
 a simple implementation of an ordered dictionary as proposed in PEP 0372
 copyright: (c) 2008 by Armin Ronacher and PEP 273 authors.
¢ license: modified BSD license (compatible with GPL)
e http://dev.pocoo.org/hg/sandbox/raw-file/tip/odict.py

1.1.3 Citing

If you find this package useful and use it in published work I’d be grateful if it was acknowledged in text as
“... used GromacsWrapper (Oliver Beckstein, http://sbcb.bioch.ox.ac.uk/oliver/software/Gromacs Wrapper/)”
or in the Acknowledgements section.
If you use the gridmatmd plugin also cite [Allen2009].
Thank you.

References

1.1.4 Download and Availability

The GromacsWrapper home page is http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/ . The latest version

of the package is being made available via the internet-thingy at the direct download URI
http://sbeb.bioch.ox.ac.uk/oliver/download/Python/

You can use this URI if you want to install from the network using easy_install as described in INSTALL.

You can also clone the GromacsWrapper git repository or fork for your own development:

git clone git://github.com/orbeckst/GromacsWrapper.git

1.1.5 Contact

Please use the Issue Tracker to report bugs and feature requests; general feedback and inquiries can be sent to Oliver
Beckstein by e-mail.

1.2 INSTALL

This document should help you to install the GromacsWrapper package. The installation uses setuptools (also known
aseasy_install or “egg install”); if this is not available on your system you can either let the installer download it
automatically from the internet (so just go to Quick installation instructions) or install it using your package manager,

eg:
aptitude install python-setuptools

or similar.

Please do not hesitate to contact Oliver Beckstein if problems occur or if you have suggestions on how to improve the
package or these instructions.

4 Chapter 1. Contents

http://www.python.org/dev/peps/pep-0372
http://www.fsf.org/licensing/licenses/index_html
http://dev.pocoo.org/hg/sandbox/raw-file/tip/odict.py
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/
http://sbcb.bioch.ox.ac.uk/oliver/software/GromacsWrapper/
http://sbcb.bioch.ox.ac.uk/oliver/download/Python/
http://github.com/orbeckst/GromacsWrapper
http://github.com/orbeckst/GromacsWrapper/issues
mailto:oliver.beckstein@bioch.ox.ac.uk
mailto:oliver.beckstein@bioch.ox.ac.uk
http://peak.telecommunity.com/DevCenter/setuptools
mailto:orbeckst@gmail.com

GromacsWrapper Documentation, Release 0.1.10

1.2.1 Quick installation instructions
If you have easy_install on your system you can directly install from the interweb:
easy_install —-f http://sbcb.bioch.ox.ac.uk/oliver/download/Python GromacsWrapper

This will automatically download and install the latest version.

1.2.2 Manual Download

If your prefer to download manually, get the latest version from
http://sbeb.bioch.ox.ac.uk/oliver/download/Python
and use any of the following methods (in increasing order of complexity):

* From an egg install file, eg GromacsWrapper-0.1-py2.5.egg:
easy_install GromacsWrapper-0.l-py2.5.egg

* From a tar ball, eg GromacsWrapper-0.1.tar.gz:
easy_install GromacsWrapper-0.l.tar.gz

* From the unpacked source:
tar —-zxvf GromacsWrapper-0.l.tar.gz
cd GromacsWrapper-0.1

python setup.py install

See the easy_install instructions for explanation of the options that allow you to install into non-standard places.

1.2.3 Source code access

The tar archive from http://sbcb.bioch.ox.ac.uk/oliver/download/Python contains a full source code distribution.

In order to follow code development you can also browse the code git repository
http://github.com/orbeckst/GromacsWrapper or clone the git repository from

git://github.com/orbeckst/Gromacs Wrapper.git

1.2.4 Requirements

at

Python and Gromacs must be installed. ipython is very much recommended. These packages might already be

available through your local package manager such as aptitude/apt, yum, yast, fink ormacports.

System requirements

Tested with python 2.5, 2.6 on Linux and Mac OS X. Earlier python versions will likely fail.

1.2. INSTALL

http://sbcb.bioch.ox.ac.uk/oliver/download/Python
http://peak.telecommunity.com/DevCenter/EasyInstall#custom-installation-locations
http://sbcb.bioch.ox.ac.uk/oliver/download/Python
http://github.com/orbeckst/GromacsWrapper
http://www.python.org
http://www.gromacs.org
http://ipython.scipy.org

GromacsWrapper Documentation, Release 0.1.10

Required python modules

The basic package makes use of numpy and can use matplotlib (in the form of the pylab package). Only numpy is
immediately required (and automatically installed with easy_install).

For the gromacs.analysis library additional packages are required:

package version | source
matplotlib | >=0.91.3 | http://matplotlib.sourceforge.net/
RecSQL >=0.3 http://sbcb.bioch.ox.ac.uk/oliver/software/RecSQL/

See Installing all packages and requirements for hints on how to install these package.

1.2.5 Additional instructions

Installing all packages and requirements

If you want to make sure that easy_install also installs requirements for optional modules then you will have to
add the additional requirement [analysis] to the command line. For a web install this would look like

easy_install —-f http://sbcb.bioch.ox.ac.uk/oliver/download/Python GromacsWrapper [analysis]
For installation from a downloaded source distribution

easy_install GromacsWrapper-0.l.tar.gz[analysis]

or from within the unpacked source

cd GromacsWrapper—-0.1
easy_install . GromacsWrapper[analysis]

In each case this will try to download additional packages for the extra analysis module.

A common problem appears to be the error Could not find matplotlib as discussed below.

1.2.6 Troubleshooting

For problems with easy_install please read the User setuptools instructions.

Installing in non-standard locations

Inform yourself about how to use easy_install to install packages in Custom Installation Locations.

For code hacking and development a developer installation is often useful. In the unpacked source:

python setup.py develop --install-dir python-lib-dir

where python-1ib-dir must be on the PYTHONPATH.

6 Chapter 1. Contents

http://numpy.scipy.org
http://matplotlib.sourceforge.net/
http://numpy.scipy.org
http://matplotlib.sourceforge.net/
http://sbcb.bioch.ox.ac.uk/oliver/software/RecSQL/
http://peak.telecommunity.com/DevCenter/setuptools#what-your-users-should-know
http://peak.telecommunity.com/DevCenter/EasyInstall#custom-installation-locations

GromacsWrapper Documentation, Release 0.1.10

easy_install import error
Online installation can run into issues where the installation dies with the error:

ImportError: No module named ez_setup

If Easylnstall Troubleshooting does not help then try downloading the source distribution package manually, unpack,
and install from inside with something like:

python setup.py install

If this is still not working contact the author and complain.

Could not find matplotlib
Automatic downloading of matplotlib often fails:

Searching for matplotlib>=0.91.3

Reading http://pypi.python.org/simple/matplotlib/

Reading http://matplotlib.sourceforge.net

Reading https://sourceforge.net/project/showfiles.php?group_id=80706&package_1d=278194
Reading https://sourceforge.net/project/showfiles.php?group_id=80706&package_1d=82474
Reading http://sourceforge.net/project/showfiles.php?group_id=80706

No local packages or download links found for matplotlib>=0.91.3

error: Could not find suitable distribution for Requirement.parse ('matplotlib>=0.91.3")

If automatic downloading of matplot1ib fails then the best approach is to install it through your package manage-
ment system. Search for “matplotlib” or “pylab” in the list of available packages.

If this is not an option then download matplotlib manually and install matplotlib manually first. For example,

wget http://kent.dl.sourceforge.net/sourceforge/matplotlib/matplotlib-0.98.5.3-py2.5-macosx-10.3-fat
-0 matplotlib-0.98.5.3-py2.5.egg

easy_install matplotlib-0.98.5.3-py2.5.egg

Note that you should look at the download matplotlib page to get the latest distribution. As highlighted in the matplotlib
installation FAQ it is important to rename the egg file (as done in the example above).

Possibly the following installation from the source distribution works, too:
easy_install matplotlib-0.98.5.3.tar.gz

Once this has been accomplished, try the above installation instructions again; easy_install should now pick up
the newly installed matplotlib.

1.3 Gromacs package

The gromacs package makes Gromacs tools available via thin python wrappers. In addition, it provides little building
blocks to solve commonly encountered tasks.

Contents:

1.3. Gromacs package 7

http://peak.telecommunity.com/DevCenter/EasyInstall#troubleshooting
http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.sourceforge.net/users/installing.html
http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.sourceforge.net/faq/installing_faq.html#easy-install-from-egg
http://matplotlib.sourceforge.net/faq/installing_faq.html#easy-install-from-egg
http://www.gromacs.org

GromacsWrapper Documentation, Release 0.1.10

1.3.1 gromacs — GromacsWrapper Package Overview

GromacsWrapper (package gromacs) is a thin shell around the Gromacs tools for light-weight integration into
python scripts or interactive use in ipython.

Modules

gromacs The top level module contains all gromacs tools; each tool can be run directly or queried for its documen-
tation. It also defines the root logger class (name gromacs by default).

gromacs.config Configuration options. Not really used much at the moment.

gromacs . cbook The Gromacs cook book contains typical applications of the tools. In many cases this not more
than just an often-used combination of parameters for a tool.

gromacs.tools Contains classes that wrap the gromacs tools. They are automatically generated from the list of
tools in gromacs.tools.gmx_tools.

gromacs . formats Classes to represent data files in various formats such as xmgrace graphs. The classes allow
reading and writing and for graphs, also plotting of the data.

gromacs.utilities Convenience functions and mixin-classes that are used as helpers in other modules.

gromacs .setup Functions to set up a MD simulation, containing tasks such as solvation and adding ions, energy
minimizqtion, MD with position-restraints, and equilibrium MD.

gromacs .gsub Functions to handle batch submission queuing systems.
gromacs.run Classes to run mdrun in various way, including on multiprocessor systems.

gromacs.analysis A package that collects whole analysis tasks. It uses the gromacs but is otherwise only loosely
coupled with the rest. At the moment it only contains the infrastructure and an example application. See the
package documentation.

Examples

The following examples should simply convey the flavour of using the package. See the individual modules for more
examples.

Getting help

In python:

help (gromacs.g_dist)
gromacs.g_dist.help()
gromacs.g_dist.help(long=True)
In ipython:

gromacs.g_dist ?

8 Chapter 1. Contents

http://www.gromacs.org
http://ipython.scipy.org

GromacsWrapper Documentation, Release 0.1.10

Simple usage

Gromacs flags are given as python keyword arguments:
gromacs.g_dist (v=True, s='topol.tpr’, f='md.xtc’, o="dist.xvg’, dist=1.2)
Input to stdin of the command can be supplied:

gromacs.make_ndx (f="topol.tpr’, o='md.ndx’,
input=(’"keep "SOL"’, ""SOL" | r NA | r CL’, ’'name 2 solvent’, "g’))

Output of the command can be caught in a variable and analyzed:

rc, output, junk = gromacs.grompp (..., stdout=False) # collects command output
for line in output.split(’\n’):
line = line.strip()

if line.startswith(’System has non-zero total charge:’):
gtot = float(line[34:])
break

(See gromacs.cbhbook.grompp_gtot () for a more robust implementation of this application.)

Warnings and Exceptions

A number of package-specific exceptions (GromacsError) and warnings (GromacsxWarning,
AutoCorrectionWarning, BadParameterWarning) can be raised.

If you want to stop execution at, for instance, a AutoCorrectionWarning or BadParameterWarning then

use the python warnings filter:

import warnings
warnings.simplefilter (’error’, gromacs.AutoCorrectionWarning)
warnings.simplefilter ('error’, gromacs.BadParameterWarning)

This will make python raise an exception instead of moving on. The default is to always report, eg:
warnings.simplefilter (’always’, gromacs.BadParameterWarning)

The following exceptions are defined:

exception GromacsError
Error raised when a gromacs tool fails.

Returns error code in the errno attribute and a string in strerror. # TODO: return status code and possibly error
message

exception MissingDataError
Error raised when prerequisite data are not available.

For analysis with gromacs.analysis.core.Simulation this typically means that the analyze ()
method has to be run first.

exception ParseError
Error raised when parsing of a file failed.

The following warnings are defined:

1.3. Gromacs package 9

http://docs.python.org/library/warnings.html#module-warnings

GromacsWrapper Documentation, Release 0.1.10

exception GromacsFailureWarning
Warning about failure of a Gromacs tool.

exception GromacsImportWarning
Warns about problems with using a gromacs tool.

exception GromacsValueWarning
Warns about problems with the value of an option or variable.

exception AutoCorrectionWarning
Warns about cases when the code is choosing new values automatically.

exception BadParameterWarning
Warns if some parameters or variables are unlikely to be appropriate or correct.

exception MissingDataWarning
Warns when prerequisite data/files are not available.

exception UsageWarning
Warns if usage is unexpected/documentation ambiguous.

Logging

The library uses python’s logging module to keep a history of what it has been doing. In particular, ev-
ery wrapped Gromacs command logs its command line (including piped input) to the log file (configured in
gromacs.config.logfilename). This facilitates debugging or simple re-use of command lines for very quick
and dirty work. The logging facilty appends to the log file and time-stamps every entry. See gromacs .config for
more details on configuration.

Version

The package version can be queried with the gromacs.get_version () function.

get_version ()
Return current package version as a string.

get_version_tuple ()
Return current package version as a tuple (MAJOR, MINOR, PATCHLEVEL).

1.3.2 Gromacs core modules

This section documents the modules, classes, and functions on which the other parts of the package rely. The infor-
mation is probably mostly relevant to anyone who wants to extend the package.

gromacs . core — Core functionality
Here the basic command class GromacsCommand is defined. All Gromacs command classes in gromacs.tools
are automatically generated from it.

class Command (*args, **kwargs)
Wrap simple script or command.

Set up the command class.

The arguments can always be provided as standard positional arguments such as

10 Chapter 1. Contents

http://docs.python.org/library/logging.html

GromacsWrapper Documentation, Release 0.1.10

"-c¢", "config.conf", "-o", "output.dat", " "—v",

"input.dat"

-—-repeats=3",

In addition one can also use keyword arguments such as
c="config.conf", o="output.dat", repeats=3, v=True
These are automatically transformed appropriately according to simple rules:

*Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

*Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

__call__ (*args, **kwargs)
Run command with the given arguments:
rc, stdout, stderr = command(xargs, input=None, xxkwargs)
All positional parameters *args and all gromacs **kwargs are passed on to the Gromacs command. input
and output keywords allow communication with the process via the python subprocess module.
Arguments

input [string, sequence] to be fed to the process’ standard input; elements of a sequence are
concatenated with newlines, including a trailing one [None]

stdin None or automatically set to PIPE if input given [None]
stdout how to handle the program’s stdout stream [None]
filehandle anything that behaves like a file object
None or True to see output on screen
False or PIPE returns the output as a string in the stdout parameter
stderr how to handle the stderr stream [STDOUT]
STDOUT merges standard error with the standard out stream
False or PIPE returns the output as a string in the stderr return parameter
None or True keeps it on stderr (and presumably on screen)
All other kwargs are passed on to the Gromacs tool.

Returns The shell return code rc of the command is always returned. Depending on the value of
output, various strings are filled with output from the command.

Notes By default, the process stdout and stderr are merged.

In order to chain different commands via pipes one must use the special
PopenWithInput object (see GromacsCommand.Popen () method) instead of
the simple call described here and first construct the pipeline explicitly and then call the
PopenWithInput.communicate () method.

STDOUT and PIPE are objects provided by the subprocess module. Any python stream
can be provided and manipulated. This allows for chaining of commands. Use

1.3.

Gromacs package 11

http://docs.python.org/library/subprocess.html#module-subprocess

GromacsWrapper Documentation, Release 0.1.10

from subprocess import PIPE, STDOUT

when requiring these special streams (and the special boolean switches True/False cannot
do what you need.)

(TODO: example for chaining commands)

run (*args, **kwargs)
Run the command; args/kwargs are added or replace the ones given to the constructor.

transform args (*args, **kwargs)
Transform arguments and return them as a list suitable for Popen.

Popen (*args, **kwargs)
Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to communicate () will not need to supply input. This is
necessary if one wants to chain the output from one command to an input from another.

Todo Write example.

help (long=False)
Print help; same as using ? in ipython. long=True also gives call signature.

command_name
Derive a class from command; typically one only has to set command_name to the name of the script or
executable. The full path is required if it cannot be found by searching PATH.

class GromacsCommand (*args, **kwargs)

Base class for wrapping a g_* command.

Limitations: User must have sourced GMXRC so that the python script can inherit the environment and find the
gromacs programs.

The class doc string is dynamically replaced by the documentation of the gromacs command when an instance
is created.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

12

Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
Popen (*args, **kwargs)
Returns a special Popen instance (PopenWithInput).

The instance has its input pre-set so that calls to communicate () will not need to supply input. This is
necessary if one wants to chain the output from one command to an input from another.

Todo Write example.

commandline (*args, **kwargs)
Returns the commandline that run() uses (without pipes).

failuremodes
Available failure modes.

gmxdoc
Usage for the underlying Gromacs tool (cached).

help (long=False)
Print help; same as using ? in ipython. long=True also gives call signature.

1.3. Gromacs package 13

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

run (*args, **kwargs)
Run the command; args/kwargs are added or replace the ones given to the constructor.

transform args (*args, **kwargs)
Combine arguments and turn them into gromacs tool arguments.

class PopenWithInput (*args, **kwargs)
Popen class that knows its input.

1.Set up the instance, including all the input it shoould receive.
2.Call PopenWithInput .communicate () later.

Note: Some versions of python have a bug in the subprocess module (issue 5179) which does not clean up
open file descriptors. Eventually code (such as this one) fails with the error:

OSError: [Errno 24] Too many open files

A weak workaround is to increase the available number of open file descriptors with ulimit -n 2048 and
run analysis in different scripts.

Initialize with the standard subprocess.Popen arguments.
Keywords
input string that is piped into the command

communicate (use_input=True)
Run the command, using the input that was set up on __init__ (for use_input = True)

gromacs . config — Configuration for GromacsWrapper

The config module provides configurable options for the whole package; eventually it might grow into a sophisticated
configuration system such as matplotlib’s rc system but right now it mostly serves to define which gromacs tools and
other scripts are offered in the package and where template files are located. If the user wants to change anything they
will still have to do it here in source until a better mechanism with rc files has been implemented.

User-supplied templates are stored under gromacs.config.configdir. Eventually this will also contain the
configuration options currently hard-coded in gromacs.config.

configdir
Directory to store user templates and rc files. The default value is ~/ . gromacswrapper.

path
Search path for user queuing scripts and templates. The internal package-supplied templates are always
searched last via gromacs.config.get_templates (). Modify gromacs.config.path directly
in order to customize the template and gscript searching. By default it has the value [’ .’, gscriptdir,
templatesdir]. (Note that it is not a good idea to have template files and gscripts with the same name as
they are both searched on the same path.)

The user should execute gromacs.config.setup () atleast once to prepare the user configurable area in their

home directory:

import gromacs
gromacs.config.setup ()

14 Chapter 1. Contents

http://bugs.python.org/issue5179
http://docs.python.org/library/subprocess.html#subprocess.Popen

GromacsWrapper Documentation, Release 0.1.10

Logging

Gromacs commands log their invocation to a log file; typically at loglevel INFO (see the python logging module for
details).

logfilename
File name for the log file; all gromacs command and many utility functions (e.g. in gromacs.cbook and
gromacs.setup) append messages there. Warnings and errors are also recorded here. The default is gro-
macs.log.

loglevel_console
The default loglevel that is still printed to the console.

loglevel file
The default loglevel that is still written to the 1ogfilename.

Gromacs tools and scripts

load_* variables are lists that contain instructions to other parts of the code which packages and scripts should be
wrapped.

load_tools
Python list of all tool file names. Automatically filled from gmx_tools and gmx_extra_tools, depending
on the values in gmx_tool_groups.

load_scripts
3rd party analysis scripts and tools; this is a list of triplets of

(script name/path, command name, doc string)
(See the source code for examples.)
load_tools is populated by listing gmx_ x tool group variables in gmx_tool_groups.

gmx_tool_groups
List of the variables in gromacs.tools that should be loaded. Possible values: gmx_tools, gmx_extra_tools.
Right now these are variable names in gromacs.config, referencing gromacs.config.gmx_tools
and gromacs.config.gmx_extra_tools.

The tool groups variables are strings that contain white-space separated file names of Gromacs tools. These lists
determine which tools are made available as classes in gromacs .tools.

tools

Contains the file names of all Gromacs tools for which classes are generated. Editing this list has only an effect
when the package is reloaded. If you want additional tools then add the, to the source (config.py) or derive
new classes manually from gromacs.core.GromacsCommand. (Eventually, this functionality will be in
a per-user configurable file.) The current list was generated from Gromacs 4.0.99 (git). Removed (because of
various issues)

*g_Kkinetics

gmx_extra_ tools
Additional gromacs tools (add gmx_extra_tools to gromacs.config.gmx_tool_groups to enable them,
provided the binaries have been provided on the PATH).

1.3. Gromacs package 15

http://docs.python.org/library/logging.html

GromacsWrapper Documentation, Release 0.1.10

Location of template files

Template variables list files in the package that can be used as templates such as run input files. Because the package
can be a zipped egg we actually have to unwrap these files at this stage but this is completely transparent to the user.

gscriptdir
Directory to store user supplied queuing system scripts. The default value is
~/.gromacswrapper/gscripts.

templatesdir
Directory to store user supplied template files such as mdp files. The default wvalue is
~/.gromacswrapper/templates.

templates
GromacsWrapper comes with a number of templates for run input files and queuing system scripts. They are
provided as a convenience and examples but WITHOUT ANY GUARANTEE FOR CORRECTNESS OR
SUITABILITY FOR ANY PURPOSE.

All template filenames are stored in gromacs.config.templates. Templates have to be extracted from
the GromacsWrapper python egg file because they are used by external code: find the actual file locations from
this variable.

Gromacs mdp templates

These are supplied as examples and there is NO GUARANTEE THAT THEY PRODUCE SENSI-
BLE OUTPUT — check for yourself! Note that only existing parameter names can be modified with
gromacs.cbook.edit_mdp () at the moment; if in doubt add the parameter with its gromacs
default value (or empty values) and modify later with edit_mdp ().

The safest bet is to use one of the mdout . mdp files produced by gromacs.grompp () as a tem-
plate as this mdp contains all parameters that are legal in the current version of Gromacs.

Queuing system templates

The queing system scripts are highly specific and you will need to add your own into
gromacs.config.gscriptdir. See gromacs.gsub for the format and how these files are
processed.

gscript_template
The default template for SGE/PBS run scripts.

setup ()
Create the directories in which the user can store template and config files.

This function can be run repeatedly without harm.

Accessing configuration data

The following functions can be used to access configuration data. Note that files are searched first with their full
filename, then in all directories listed in gromacs.config.path, and finally within the package itself.

get_template (1)
Find template file 7 and return its real path.

t can be a single string or a list of strings. A string should be one of
1.a relative or absolute path,

2.a file in one of the directories listed in gromacs .config.path,

16 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.10

3.a filename in the package template directory (defined in the template dictionary
gromacs.config.templates)or

4.akey into templates.

The first match (in this order) is returned. If the argument is a single string then a single string is returned,
otherwise a list of strings.

Arguments 7 : template file or key (string or list of strings)
Returns os.path.realpath(?) (or a list thereof)
Raises ValueError if no file can be located.

get_templates (1)
Find template file(s) ¢ and return their real paths.

t can be a single string or a list of strings. A string should be one of
1.a relative or absolute path,
2.a file in one of the directories listed in gromacs.config.path,

3.a filename in the package template directory (defined in the template dictionary
gromacs.config.templates)or

4.akey into templates.
The first match (in this order) is returned for each input argument.
Arguments 7 : template file or key (string or list of strings)
Returns list of os.path.realpath(r)

Raises ValueError if no file can be located.

gromacs . formats — Accessing various files

This module contains classes that represent data files on disk. Typically one creates an instance and
* reads from a file using a read () method, or

 populates the instance (in the simplest case with a set () method) and the uses the write () method to write
the data to disk in the appropriate format.

For function data there typically also exists a plot () method which produces a graph (using matplotlib).

The module defines some classes that are used in other modules; they do nor make use of gromacs.tools or
gromacs . cbook and can be safely imported at any time.

Classes

class XVG (filename=None, names=None, permissive=False)
Class that represents the numerical data in a grace xvg file.

All data must be numerical. NAN and INF values are supported via python’s £ Loat () builtin function.

The array attribute can be used to access the the array once it has been read and parsed. The ma attribute is a
numpy masked array (good for plotting).

Conceptually, the file on disk and the XVG instance are considered the same data. Whenever the filename
for I/O (XVG.read () and XVG.write ()) is changed then the filename associated with the instance is also
changed to reflect the association between file and instance.

1.3. Gromacs package 17

http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/stdtypes.html#set
http://docs.python.org/library/functions.html#float

GromacsWrapper Documentation, Release 0.1.10

With the permissive = True flag one can instruct the file reader to skip unparseable lines. In this case the line
numbers of the skipped lines are stored in XVG.corrupted_lineno.

Note:

*Only simple XY or NXY files are currently supported, not Grace files that contain multiple data sets
separated by ‘&’.

*Any kind of formatting (xmgrace commands) are discarded.
Initialize the class from a xvg file.
Arguments

filename is the xvg file; it can only be of type XY or NXY. If it is supplied then it is read and
parsed when XVG. array is accessed.

names optional labels for the columns (currently only written as comments to file); string with
columns separated by commas or a list of strings

permissive False raises a ValueError and logs and errior when encountering data lines
that it cannot parse. True ignores those lines and logs a warning—this is a risk because it
might read a corrupted input file [False]

array
Represent xvg data as a (cached) numpy array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 ... the array
awillbe a[0] =X, a[l]=Y1,

errorbar (**kwargs)
Quick hack: errorbar plot.

Set columns to select [x, y, dy].

ma
Represent data as a masked array.
The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 ... the array
awillbe a[0] =X, a[l1]=Y1,
inf and nan are filtered via numpy.isfinite ().
max
Maximum of the data columns.
mean
Mean value of all data columns.
min
Minimum of the data columns.
parse ()

Read and cache the file as a numpy array.

The array is returned with column-first indexing, i.e. for a data file with columns X Y1 Y2 Y3 ... the array
awill be a[0] =X, a[1] = Y1,

plot (**kwargs)
Plot xvg file data.

The first column of the data is always taken as the abscissa X. Additional columns are plotted as ordinates
Y1, Y2, ..

18

Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.ValueError

GromacsWrapper Documentation, Release 0.1.10

In the special case that there is only a single column then this column is plotted against the index, i.e. (N,
Y).

Keywords

columns [list] Select the columns of the data to be plotted; the list is used as a numpy.array
extended slice. The default is to use all columns. Columns are selected after a transform.

transform [function] function transform(array) -> array which transforms the
original array; must return a 2D numpy array of shape [X, Y1, Y2, ...] where X, Y1, ... are
column vectors. By default the transformation is the identity [Lambda x: x].

maxpoints [int] limit the total number of data points; matplotlib has issues processing png
files with >100,000 points and pdfs take forever to display. Set to None if really all data
should be displayed. At the moment we simply subsample the data at regular intervals.
[10000]

kwargs All other keyword arguments are passed on to pylab.plot ().

read (filename=None)
Read and parse xvg file filename.

set (a)
Set the array data from a (i.e. completely replace).

No sanity checks at the moment...

std
Standard deviation from the mean of all data columns.

write (filename=None)
Write array to xvg file filename in NXY format.

Note: Only plain files working at the moment, not compressed.

class NDX (filename=None, **kwargs)
Gromacs index file.

Represented as a ordered dict where the keys are index group names and values are numpy arrays of atom
numbers.

Use the NDX . read () and NDX.write () methods for I/O. Access groups by name via the NDX . get () and
NDX.set () methods.

Alternatively, simply treat the NDX instance as a dictionary. Setting a key automatically transforms the new
value into a integer 1D numpy array (not a set, as would be the make_ndx behaviour).

Note: The index entries themselves are ordered and can contain duplicates so that output from
NDX can be easily used for g dih and friends. If you need set-like behaviour you will have do
use gromacs.formats.uniqueNDX or gromacs.cbook.IndexBuilder (which uses make ndx
throughout).

Example
Read index file, make new group and write to disk:
ndx = NDX ()
ndx.read (' system.ndx"’)
print ndx[’Protein’]

ndx['my_group’] = [2, 4, 1, 5] # add new group
ndx.write (' new.ndx’)

Or quicker (replacing the input file system. ndx):

1.3. Gromacs package 19

GromacsWrapper Documentation, Release 0.1.10

ndx = NDX(’system’) # suffix .ndx is automatically added
ndx[’chil’] = [2, 7, 8, 10]
ndx.write ()

format
standard ndx file format: ‘%6d’

get (name)
Return index array for index group name.

groups
Return a list of all groups.

ncol
standard ndx file format: 15 columns

ndxlist
Return a list of groups in the same format as gromacs.cbook.get_ndx_groups ().

Format: [{‘name’: group_name, ‘natoms’: number_atoms, ‘nr’: # group_number},]

read (filename=None)
Read and parse index file filename.

set (name, value)
Set or add group name as a 1D numpy array.

size (name)
Return number of entries for group name.

sizes
Return a dict with group names and number of entries,

write (filename=None, ncol=15, format="%6d’)
Write index file to filename (or overwrite the file that the index was read from)

class uniqueNDX (filename=None, **kwargs)
Index that behaves like make_ndx, i.e. entries behaves as sets, not lists.

The index lists behave like sets: - adding sets with ‘+’ is equivalent to a logical OR: x + y == “x | y” - subtraction
‘-“is AND: x -y ==“x & y” - see join () for ORing multiple groups (x+y+z+...)

Example :: I =uniqueNDX(‘system.ndx’) [[’SOLVENT’] =1[’SOL’] + I[’'NA+’] + I[’CL-‘]

join (*groupnames)
Return an index group that contains atoms from all groupnames.

The method will silently ignore any groups that are not in the index.
Example

Always make a solvent group from water and ions, even if not all ions are present in all simulations:
I["SOLVENT’] = I.join(’SOL’, 'NA+’, 'K+’, 'CL-")

class GRO (**kwargs)
Class that represents a GROMOS (gro) structure file.
File format:

(Not implemented yet)

20 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.10

read (filename=None)
Read and parse index file filename.

gromacs.utilities — Helper functions and classes

The module defines some convenience functions and classes that are used in other modules; they do not make use of
gromacs.tools or gromacs . cbook and can be safely imported at any time.

Classes

FileUtils provides functions related to filename handling. It can be used as a base or mixin class. The
gromacs.analysis.Simulation classis derived from it.

classFileUtils ()
Mixin class to provide additional file-related capabilities.

check_file_ exists (filename, resolve="exception’, force=None)
If a file exists then continue with the action specified in resolve.

resolve must be one of

“ignore” always return False

“indicate” return True if it exists

“warn” indicate and issue a UserWarning

“exception” raise TOError if it exists

Alternatively, set force for the following behaviour (which ignores resolve):
True same as resolve = “ignore” (will allow overwriting of files)

False same as resolve = “exception” (will prevent overwriting of files)
None ignored, do whatever resolve says

default_extension
Default extension for files read/written by this class.

filename (filename=None, ext=None, set_default=False, use_my_ext=False)
Supply a file name for the class object.

Typical uses:

fn = filename () —-——> <default_filename>

fn = filename (' name.ext’) ———=> ’"name’

fn = filename (ext='pickle’) ---> <default_filename>’ .pickle’

fn = filename (' name.inp’,’pdf’) —--> ’"name.pdf’

fn = filename ('’ foo.pdf’,ext='png’,use_my_ext=True) --> ’'foo.pdf’

The returned filename is stripped of the extension (use_my_ext=False) and if provided, another ex-
tension is appended. Chooses a default if no filename is given.

Raises a ValueError exception if no default file name is known.
If set_default=True then the default filename is also set.

use_my_ext=True lets the suffix of a provided filename take priority over a default ext tension.

1.3. Gromacs package 21

http://docs.python.org/library/exceptions.html#exceptions.UserWarning
http://docs.python.org/library/exceptions.html#exceptions.IOError

GromacsWrapper Documentation, Release 0.1.10

infix_filename (name, default, infix, ext=None)
Unless name is provided, insert infix before the extension ext of default.

class AttributeDict ()
A dictionary with pythonic access to keys as attributes — useful for interactive work.

class Timedelta ()
Extension of datetime.timedelta.

Provides attributes ddays, dhours, dminutes, dseconds to measure the delta in normal time units.

ashours gives the total time in fractional hours.

Functions

Some additional convenience functions that deal with files and directories:

openany (directory, [mode="r’])
Context manager to open a compressed (bzip2, gzip) or plain file (uses anyopen ()).

anyopen (datasource, mode="r’)
Open datasource (gzipped, bzipped, uncompressed) and return a stream.

Arguments

edatasource: a file or a stream
*mode: ‘t’ or ‘W’
realpath (*args)
Join all args and return the real path, rooted at /.
Returns None if any of the args is none.

in_dir (directory, [create=True])
Context manager to execute a code block in a directory.

*The directory is created if it does not exist (unless create = False is set)

*At the end or after an exception code always returns to the directory that was the current directory before
entering the block.

find_first (filename, suffices=None)
Find first filename with a suffix from suffices.

Arguments
filename base filename; this file name is checked first

suffices list of suffices that are tried in turn on the root of filename; can contain the ext separator
(os.path.extsep) or not

Returns The first match or None.

withextsep (extensions)
Return list in which each element is guaranteed to start with os.path.extsep.

Functions that improve list processing and which do not treat strings as lists:

iterable (0bj)
Returns True if 0bj can be iterated over and is not a string.

22 Chapter 1. Contents

http://docs.python.org/library/datetime.html#datetime.timedelta

GromacsWrapper Documentation, Release 0.1.10

asiterable (0bj)
Returns obj so that it can be iterated over; a string is not treated as iterable

Functions that help handling Gromacs files:

unlink_f£ (path)
Unlink path but do not complain if file does not exist.

unlink_gmx (*args)
Unlink (remove) Gromacs file(s) and all corresponding backups.

unlink_gmx_backups (*args)
Unlink (rm) all backup files corresponding to the listed files.

number_pdbs (*args, **kwargs)
Rename pdbs x1.pdb ... x345.pdb — x0001.pdb ... x0345.pdb

Arguments
* args: filenames or glob patterns (such as “pdb/md*.pdb”)
* format: format string including keyword num [”%(num)04d”]
Functions that make working with matplotlib easier:

activate_subplot (numPlot)
Make subplot numPlot active on the canvas.

Use this if a simple subplot (numRows, numCols, numPlot) overwrites the subplot instead of acti-
vating it.

remove_legend (ax=None)
Remove legend for axes or gca.

See http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html
Miscellaneous functions:

convert_aa_code (x)
Converts between 3-letter and 1-letter amino acid codes.

Data

amino_acid_codes
translation table for 1-letter codes —> 3-letter codes .. Note: This does not work for HISB and non-default charge
state aa!

gromacs.tools — Gromacs commands classes
A Gromacs command class can be thought of as a factory function that produces an instance of a gromacs command
(gromacs.core.GromacsCommand) with initial default values.

By convention, a class has the capitalized name of the corresponding Gromacs tool; dots are replaced by underscores
to make it a valid python identifier.

The list of Gromacs tools to be loaded is configured in gromacs.config.gmx_tool_groups.

It is also possible to extend the basic commands and patch in additional functionality. For example, the
GromacsCommandMultiIndex class makes a command accept multiple index files and concatenates them on
the fly; the behaviour mimics Gromacs’ “multi-file” input that has not yet been enabled for all tools.

1.3. Gromacs package 23

http://matplotlib.sourceforge.net/
http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html

GromacsWrapper Documentation, Release 0.1.10

class GromacsCommandMultiIndex (**kwargs)
Initialize instance.

1.Sets up the combined index file.
2.Inititialize GromacsCommand with the new index file.
See the documentation for gromacs . core.GromacsCommand for details.

run (*args, **kwargs)
Run the command; make a combined multi-index file if necessary.

_fake_multi_ndx (**kwargs)
Combine multiple index file into a single one and return appropriate kwargs.

Calling the method combines multiple index files into a a single temporary one so that Gromacs tools that
do not (yet) support multi file input for index files can be used transparently as if they did.

If a temporary index file is required then it is deleted once the object is destroyed.

Returns The method returns the input keyword arguments with the necessary changes to use the
temporary index files.

Keywords Only the listed keywords have meaning for the method:

n [filename or list of filenames] possibly multiple index files; n is replaced by the name of
the temporary index file.

s [filename] structure file (tpr, pdb, ...) or None; if a structure file is supplied then the
Gromacs default index groups are automatically added to the temporary indexs file.

Example Used in derived classes that replace the standard run () (or __init__ ()) methods
with something like:

def run(self, rargs, xxkwargs) :
kwargs = self._fake_multi_ndx (x+kwargs)
return super (G_mindist, self).run(xargs, =*kwargs)

del ()
Clean up temporary multi-index files if they were used.

Example

In this example we create two instances of the gromacs.tools.Trjconv command (which runs the Gromacs
trjconv command):

import gromacs.tools as tools

trjconv = tools.Trjconv ()

trjconv_compact = tools.Trjconv (ur='compact’, center=True, boxcenter='tric’, pbc='mol’,
input=('protein’,’system’),
doc="Returns a compact representation of the system centered on the j

The first one, t r jconv, behaves as the standard commandline tool but the second one, t r jconv_compact, will
by default create a compact representation of the input data by taking into account the shape of the unit cell. Of
course, the same effect can be obtained by providing the corresponding arguments to t r jconv but by naming the
more specific command differently one can easily build up a library of small tools that will solve a specifi, repeatedly
encountered problem reliably. This is particularly helpful when doing interactive work.

24 Chapter 1. Contents

http://docs.python.org/reference/datamodel.html#object.__init__

GromacsWrapper Documentation, Release 0.1.10

Gromacs tools

The documentation of all wrapped gromacs tools is auto-generated and can be found in Wrapped Gromacs Tools. Here
only two examples (Mdrun and GridMAT_MD) are shown.

class Mdrun (*args, **kwargs)
Gromacs tool ‘mdrun’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

-)

1.3. Gromacs package

25

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class GridMAT_MD (*args, **kwargs)

External tool ‘GridMAT-MD.pl’
GridMAT-MD: A Grid-based Membrane Analysis Tool for use with Molecular Dynamics.

This GridMAT-MD is a patched version of the original GridMAT-MD.pl v1.0.2, written by WJ Allen, JA
Lemkul and DR Bevan. The original version is available from the GridMAT-MD home page,

Please cite

W.J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Anal-
ysis Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

when using this programme.
Usage:
class GridMAT_MD (config, [structure])

Arguments
* config : See the original documentation for a description for the configuration file.

* structure : A gro or pdb file that overrides the value for bilayer in the configuration file.

Set up the command class.
The arguments can always be provided as standard positional arguments such as

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v",
"input.dat"

In addition one can also use keyword arguments such as
c="config.conf", o="output.dat", repeats=3, v=True
These are automatically transformed appropriately according to simple rules:

*Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

*Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

26

Chapter 1. Contents

http://www.bevanlab.biochem.vt.edu/GridMAT-MD/index.html

GromacsWrapper Documentation, Release 0.1.10

Wrapped Gromacs tools

This is the auto-generated list of all Gromacs tools that were available when this documentation was built. They are
part of the Gromacs core modules.

gromacs.tools — Gromacs commands classes

A Gromacs command class can be thought of as a factory function that produces an instance of a gromacs command
(gromacs.core.GromacsCommand) with initial default values.

By convention, a class has the capitalized name of the corresponding Gromacs tool; dots are replaced by underscores
to make it a valid python identifier.

The list of Gromacs tools to be loaded is configured in gromacs.config.gmx_tool_groups.

It is also possible to extend the basic commands and patch in additional functionality. For example, the
GromacsCommandMultiIndex class makes a command accept multiple index files and concatenates them on
the fly; the behaviour mimics Gromacs’ “multi-file” input that has not yet been enabled for all tools.

class GromacsCommandMultiIndex (**kwargs)
Initialize instance.

1.Sets up the combined index file.
2.Inititialize GromacsCommand with the new index file.
See the documentation for gromacs.core.GromacsCommand for details.

run (*args, **kwargs)
Run the command; make a combined multi-index file if necessary.

_fake_multi_ndx (**kwargs)
Combine multiple index file into a single one and return appropriate kwargs.

Calling the method combines multiple index files into a a single temporary one so that Gromacs tools that
do not (yet) support multi file input for index files can be used transparently as if they did.

If a temporary index file is required then it is deleted once the object is destroyed.

Returns The method returns the input keyword arguments with the necessary changes to use the
temporary index files.

Keywords Only the listed keywords have meaning for the method:

n [filename or list of filenames] possibly multiple index files; n is replaced by the name of
the temporary index file.

s [filename] structure file (tpr, pdb, ...) or None; if a structure file is supplied then the
Gromacs default index groups are automatically added to the temporary indexs file.

Example Used in derived classes that replace the standard run () (or __init__ ()) methods
with something like:

def run(self, rargs, »xkwargs) :
kwargs = self._fake_multi_ndx (x+xkwargs)
return super (G_mindist, self).run(xargs, =x*kwargs)

del ()
Clean up temporary multi-index files if they were used.

1.3. Gromacs package 27

http://docs.python.org/reference/datamodel.html#object.__init__

GromacsWrapper Documentation, Release 0.1.10

Example In this example we create two instances of the gromacs.tools.Trjconv command (which runs the
Gromacs tr jconv command):

import gromacs.tools as tools

trjconv = tools.Trjconv ()

trjconv_compact = tools.Trjconv (ur=’'compact’, center=True, boxcenter='tric’, pbc='mol’,
input=(’'protein’,’system’),
doc="Returns a compact representation of the system centered on the j

The first one, tr jconv, behaves as the standard commandline tool but the second one, tr jconv_compact, will
by default create a compact representation of the input data by taking into account the shape of the unit cell. Of
course, the same effect can be obtained by providing the corresponding arguments to tr jconv but by naming the
more specific command differently one can easily build up a library of small tools that will solve a specifi, repeatedly
encountered problem reliably. This is particularly helpful when doing interactive work.

Gromacs tools
class Gmxcheck (*args, **kwargs)
Gromacs tool ‘gmxcheck’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand(’v’, f=['mdl.xtc’,’'md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

28 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_angle (*args, **kwargs)
Gromacs tool ‘g_angle’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option

)

1.3. Gromacs package

29

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_clustsize (*args, **kwargs)
Gromacs tool ‘g_clustsize’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

30 Chapter 1. Contents

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_mindist (**kwargs)
Gromacs tool ‘g_mindist’ (with patch to handle multiple ndx files).
Initialize instance.
1.Sets up the combined index file.
2.Inititialize GromacsCommand with the new index file.
See the documentation for gromacs . core.GromacsCommand for details.

class G_sas (*args, **kwargs)
Gromacs tool ‘g_sas’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 31

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

32 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class Sigeps (*args, **kwargs)
Gromacs tool ‘sigeps’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

33

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class GridMAT_MD (*args, **kwargs)

External tool ‘GridMAT-MD.pl’
GridMAT-MD: A Grid-based Membrane Analysis Tool for use with Molecular Dynamics.

This GridMAT-MD is a patched version of the original GridMAT-MD.pl v1.0.2, written by W] Allen, JA
Lemkul and DR Bevan. The original version is available from the GridMAT-MD home page,

Please cite

W.J. Allen, J. A. Lemkul, and D. R. Bevan. (2009) “GridMAT-MD: A Grid-based Membrane Anal-
ysis Tool for Use With Molecular Dynamics.” J. Comput. Chem. 30 (12): 1952-1958.

when using this programme.
Usage:

class GridMAT_MD (config, [structure])

Arguments
* config : See the original documentation for a description for the configuration file.

* structure : A gro or pdb file that overrides the value for bilayer in the configuration file.

Set up the command class.
The arguments can always be provided as standard positional arguments such as

"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v",
"input.dat"

In addition one can also use keyword arguments such as
c="config.conf", o="output.dat", repeats=3, v=True
These are automatically transformed appropriately according to simple rules:

*Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single
dash and the value separated by a space.

*Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes
and the value will be joined directly with an equals sign and no space.

If this does not work (as for instance for the options of the UNIX find command) then provide options and
values in the sequence of positional arguments.

class Mdrun_d (*args, **kwargs)

Gromacs tool ‘mdrun_d’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

34

Chapter 1. Contents

http://www.bevanlab.biochem.vt.edu/GridMAT-MD/index.html

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

1.3. Gromacs package 35

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_dist (**kwargs)
Gromacs tool ‘g_dist’ (with patch to handle multiple ndx files).

Initialize instance.
1.Sets up the combined index file.
2.Inititialize GromacsCommand with the new index file.
See the documentation for gromacs.core.GromacsCommand for details.

class G_h2order (*args, **kwargs)
Gromacs tool ‘g_h2order’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

36 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class Genbox (*args, **kwargs)
Gromacs tool ‘genbox’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

37

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_rms (*args, **kwargs)
Gromacs tool ‘g_rms’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

38 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_filter (*args, **kwargs)
Gromacs tool ‘g_filter’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

39

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Protonate (*args, **kwargs)
Gromacs tool ‘protonate’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

40 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_velacc (*args, **kwargs)
Gromacs tool ‘g_velacc’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 4

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

42 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_spatial (*args, **kwargs)
Gromacs tool ‘g_spatial’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

43

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_current (*args, **kwargs)
Gromacs tool ‘g_current’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

44 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_dielectric (*args, **kwargs)
Gromacs tool ‘g_dielectric’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

45

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_nmtraj (*args, **kwargs)
Gromacs tool ‘g_nmtraj’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

46 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_sham (*args, **kwargs)
Gromacs tool ‘g_sham’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

47

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_polystat (*args, **kwargs)
Gromacs tool ‘g_polystat’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

48 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_confrms (*args, **kwargs)
Gromacs tool ‘g_confrms’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 49

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

50 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_potential (*args, **kwargs)
Gromacs tool ‘g_potential’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand(’v’, f=['mdl.xtc’,’md2.xtc’], o='"processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 51

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_msd (*args, **kwargs)
Gromacs tool ‘g_msd’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

52 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class Wheel (*args, **kwargs)
Gromacs tool ‘wheel’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

53

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Trjorder (*args, **kwargs)
Gromacs tool ‘trjorder’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

54 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_disre (*args, **kwargs)
Gromacs tool ‘g_disre’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

55

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_analyze (*args, **kwargs)
Gromacs tool ‘g_analyze’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

56 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_order (*args, **kwargs)
Gromacs tool ‘g_order’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 57

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

58 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_dyndom (*args, **kwargs)
Gromacs tool ‘g_dyndom’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

59

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Mdrun (*args, **kwargs)
Gromacs tool ‘mdrun’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

60 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Trjcat (*args, **kwargs)
Gromacs tool ‘trjcat’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 61

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Editconf (*args, **kwargs)
Gromacs tool ‘editconf’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

62 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class Pdb2gmx (*args, **kwargs)
Gromacs tool ‘pdb2gmx’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

63

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_helixorient (*args, **kwargs)
Gromacs tool ‘g_helixorient’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

64 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_principal (*args, **kwargs)
Gromacs tool ‘g_principal’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 65

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

66 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_gyrate (*args, **kwargs)
Gromacs tool ‘g_gyrate’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

67

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_densmap (*args, **kwargs)
Gromacs tool ‘g_densmap’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

68 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_tcaf (*args, **kwargs)
Gromacs tool ‘g_tcaf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

69

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_covar (*args, **kwargs)
Gromacs tool ‘g_covar’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

70 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_helix (*args, **kwargs)
Gromacs tool ‘g_helix’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd = GromacsCommand(’v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

1.3. Gromacs package 4

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_bond (*args, **kwargs)
Gromacs tool ‘g_bond’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

72 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Mk__angndx (*args, **kwargs)
Gromacs tool ‘mk_angndx’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 73

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

74 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_energy (*args, **kwargs)
Gromacs tool ‘g_energy’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

75

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_mdmat (*args, **kwargs)
Gromacs tool ‘g_mdmat’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

76 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class Eneconv (*args, **kwargs)
Gromacs tool ‘eneconv’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

77

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Anadock (*args, **kwargs)
Gromacs tool ‘anadock’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

78 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_saltbr (*args, **kwargs)
Gromacs tool ‘g_saltbr’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

79

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_rdf (*args, **kwargs)
Gromacs tool ‘g_rdf’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

80 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Grompp (*args, **kwargs)
Gromacs tool ‘grompp’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 81

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

82 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class Trjconv (*args, **kwargs)
Gromacs tool ‘trjconv’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

83

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Luck (*args, **kwargs)
Gromacs tool ‘luck’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

84 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class Do_dssp (*args, **kwargs)
Gromacs tool ‘do_dssp’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

85

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_sgangle (*args, **kwargs)
Gromacs tool ‘g_sgangle’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

86 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_sdf (*args, **kwargs)
Gromacs tool ‘g_sdf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

87

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_sorient (*args, **kwargs)
Gromacs tool ‘g_sorient’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

88 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_bundle (*args, **kwargs)
Gromacs tool ‘g_bundle’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 89

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

920 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_rmsf (*args, **kwargs)
Gromacs tool ‘g_rmsf’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand(’v’, f=['mdl.xtc’,’md2.xtc’], o='"processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package 91

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_wham (*args, **kwargs)
Gromacs tool ‘g_wham’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

92 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class Gmxdump (*args, **kwargs)
Gromacs tool ‘gmxdump’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand(’'v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

)

1.3. Gromacs package

93

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_cluster (*args, **kwargs)
Gromacs tool ‘g_cluster’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

94 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_dipoles (*args, **kwargs)
Gromacs tool ‘g_dipoles’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

95

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_lie (*args, **kwargs)
Gromacs tool ‘g_lie’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

96 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_rotacf (*args, **kwargs)
Gromacs tool ‘g_rotacf’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 97

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

98 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class Xpm2ps (*args, **kwargs)
Gromacs tool ‘xpm2ps’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

99

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_rama (*args, **kwargs)
Gromacs tool ‘g_rama’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

100 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_traj (*args, **kwargs)
Gromacs tool ‘g_traj’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

1.3. Gromacs package 101

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_vanhove (*args, **kwargs)
Gromacs tool ‘g_vanhove’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

102 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

class G_anaeig (*args, **kwargs)
Gromacs tool ‘g_anaeig’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

-)

1.3. Gromacs package

103

GromacsWrapper Documentation, Release 0.1.10

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class X2top (*args, **kwargs)
Gromacs tool ‘x2top’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand ('v’, f=['mdl.xtc’,’md2.xtc’], o="processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

104 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class Genconf (*args, **kwargs)
Gromacs tool ‘genconf’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

1.3. Gromacs package 105

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

cmd = GromacsCommand (’v’, f=['mdl.xtc’,’'md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with ' nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution
The command is executed with the run () method or by calling it as a function. The two next lines

are equivalent:

cmd (...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently

doc [string] additional documentation []

106 Chapter 1. Contents

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

class G_hbond (*args, **kwargs)
Gromacs tool ‘g_hbond’.

Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:

cmd

= GromacsCommand (’'v’, f=['mdl.xtc’,’'md2.xtc’], o='"processed.xtc’, t=200,

which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (’ v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take parameters are handled as keyword arguments. If an option takes
multiple arguments (such as the multi-file input —-f filel file2 ...) then the list of files
must be supplied as a python list.

If a keyword has the python value None then it will not be added to the Gromacs command line; this
allows for flexible scripting if it is not known in advance if an input file is needed. In this case the
default value of the gromacs tool is used.

Keywords must be legal python keywords or the interpreter raises a SyntaxError but of course
Gromacs commandline arguments are not required to be legal python. In this case “quote” the option
with an underscore (_) and the underscore will be silently stripped. For instance, —or translates to
the illegal keyword or so it must be underscore-quoted:

cmd(...., _or="mindistres.xvg’)

Command execution

The command is executed with the run () method or by calling it as a function. The two next lines
are equivalent:

cmd(...)
cmd.run(...)

When the command is run one can override options that were given at initialization or one can add
additional ones. The same rules for supplying Gromacs flags apply as described above.

Non-Gromacs keyword arguments

The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine
how the command class behaves. They are only useful when instantiating a class. This is mostly of
interest to developers.

Keywords

failure determines how a failure of the gromacs command is treated; it can be one of the fol-
lowing:

1.3. Gromacs package

107

http://docs.python.org/library/exceptions.html#exceptions.SyntaxError

GromacsWrapper Documentation, Release 0.1.10

‘raise’ raises GromacsError if command fails
‘warn’ issue a GromacsFailureWarning
None just continue silently
doc [string] additional documentation []
class G_nmens (*args, **kwargs)
Gromacs tool ‘g_nmens’.
Set up the command with gromacs flags as keyword arguments.

The following are generic instructions; refer to the Gromacs command usage information that should have
appeared before this generic documentation.

As an example, a generic Gromacs command could use the following flags:
cmd = GromacsCommand (’v’, f=['mdl.xtc’,’md2.xtc’], o='processed.xtc’, t=200, ...)
which would correspond to running the command in the shell as

GromacsCommand -v —-f mdl.xtc md2.xtc -o processed.xtc -t 200

Gromacs command line arguments

Gromacs boolean switches (such as —v) are given as python positional arguments (* v’) or as key-
word argument (v=True); note the quotes in the first case. Negating a boolean switch can be done
with " nov’, nov=True or v=False (and even nov=False works as expected: it is the same as
v=True).

Any Gromacs options that take