Table S1: Osmotic permeability coefficient p_f and equilibrium flux Φ_0 of water in selected simulations and experiments. We used the relationship $p_f = \frac{1}{2}\Phi_0 v_l$ from Ref. 1 in order to compare non-equilibrium experiments (upper half of the table) with equilibrium molecular dynamics simulations (lower half). $v_l = 3.09 \times 10^{-23}$ cm³ is the volume of a water molecule in the liquid state.

	Ref.	$p_f \times 10^{14}$ [cm ³ s ⁻¹]	$\begin{array}{c} \Phi_0\\ [ns^{-1}] \end{array}$
Aqp1	(2)	4.9	3.2
Aqp4	(2)	15	9.7
AqpZ	(3)	2.0	1.3
gA^a	(4)	1.6	1.0
desformyl gA^b	(5)	110	71
R = 0.35 nm		4.0	2.6
R = 0.40 nm		5.7	3.7
R = 0.45 nm		30.0	19.4
R = 0.50 nm		66.5	43.0
R = 0.55 nm		117	75.8
R = 0.60 nm		363	235
R = 0.70 nm		700	453
R = 1.0 nm		1480	956
carbon nanotube c	(6)	26.2	16.9
desformyl g A (DH)^d	(1)	10	5.8

^abacterial peptide channel gramicidin A

^bdesformylated gramicidin A

 $^{c}(6,6)$ carbon nanotube, $R\approx0.24$ nm

 $^d \mathrm{desformyl}\;\mathrm{gA}$ in the double-helical conformation

References

- de Groot, B. L., Tieleman, D. P., Pohl, P., & Grubmüller, H. (2002) Biophys. J. 82, 2934–42.
- 2. Yang, B., van Hoek, A. N., & Verkman, A. S. (1997) Biochemistry 36, 7625–7632.
- Pohl, P., Saparov, S. M., Borgnia, M. J., & Agre, P. (2001) Proc. Natl. Acad. Sci. USA 98, 9624–9629.
- 4. Pohl, P. & Saparov, S. M. (2000) *Biophys. J.* 78, 2426–2434.
- 5. Saparov, S. M., Antonenko, Y. N., & Pohl, P. (2000) Biophys. J. 79, 2526–2534.
- 6. Hummer, G., Rasaiah, J. C., & Noworyta, J. P. (2001) Nature 414, 188–190.