

JGromacs v1.0.

documentation

 2

Contents

Introduction 3

Installation Guide 4

Subpackages 6

Multi-level representation 7

Quick Start Guide 11

Example 27

Example codes 28

Classes 29

JGromacs user interface 37

Copyright notice 39

 3

Introduction

What is JGromacs?

JGromacs is a Java library designed to facilitate the development of cross-
platform analysis applications for Molecular Dynamics (MD) simulations. The
package contains parsers for file formats applied by Gromacs (GROningen
MAchine for Chemical Simulations), one of the most widely used MD
simulation packages. JGromacs provides a multi-level object-oriented
representation of simulation data to integrate and interconvert sequence,
structure and dynamics information. A basic analysis toolkit is included in the
package. The programmer is also provided with simple tools (e.g. XML-based
configuration) to create applications with a user interface resembling the
command-line UI of Gromacs applications.

JGromacs is an open-source project released under the GPL (GNU General
Public License). It is developed by Márton Münz and Dr. Philip C Biggin at the
Structural Bioinformatics and Computational Biochemistry Unit at the
Department of Biochemistry in the University of Oxford.

Availability of JGromacs

JGromacs and its detailed documentation can be downloaded from our
website: http://sbcb.bioch.ox.ac.uk/jgromacs/. We welcome comments,
feature requests and improvements. If you have problem downloading,
installing or running JGromacs, contact us by writing email to
marton.munz@dtc.ox.ac.uk.

JavaDoc and examples

Please note that the automatically generated JavaDoc documentation and a
library of example codes are also available on the project’s website.

Citing JGromacs

A manuscript is currently under review. In the meantime you can simply refer
to the project’s website.

http://www.gromacs.org/
http://www.gnu.org/licenses/gpl.html
http://sbcb.bioch.ox.ac.uk/jgromacs/
mailto:marton.munz@dtc.ox.ac.uk

 4

Installation Guide

Downloading JGromacs

The entire JGromacs package can be downloaded from our website as a single JAR
(Java ARchive) file; jgromacs_v1_bin.jar. This file contains all binaries of the library.

(Note that the source code of the package can also be downloaded in the gzipped tar
file; jgromacs_v1_src.tgz.)

In order to make use of the API in your own Java project or to run the example codes
or the JUnit test suite available on our website, you will need to add the
jgromacs_v1_bin.jar file to the classpath you are using.

First of all, download the jar file and place it in a directory where you can access it
later. Here we give instructions for how to use the API in your project, compile and
run example codes and the test suite.

Important:
The following instructions are valid only if you are compiling/running your code in
Linux or Mac OS X. In case you are working in Windows, you will need to replace
colon (:) characters with semicolon (;) characters in the commands below!

Using the API

In order to use the API in your own Java project, you only have to add the
jgromacs_v1_bin.jar file as an external library to the build path of your project. In the
commonly used development environments (IDEs) such as Eclipse, this can easily
be done using a GUI.

Alternatively, you may compile your application in the command line using the
following command:

 javac -cp XXX/jgromacs_v1_bin.jar:. MainClass.java

Here XXX represents the path of location where the jgromacs_v1_bin.jar package
has been downloaded to. MainClass.java is the class to be compiled.

Once compiled, your application can be run using the command:

 java -cp XXX/jgromacs_v1_bin.jar:. MainClass

Alternatively, you can compile and run your application by rebuilding the JGromacs
source code library using the following command:

 5

 javac -sourve 1.5 -cp YYY:. MainClass.java

 java -cp YYY:. MainClass

Here YYY represents the path of location where the jgromacs_v1_src.tgz package
has been extracted to.

Note that if you make use of JGromacs classes in your code, you need to import the
required classes within your .java file. For example, the following command imports
the jgromacs.data.Structure class into your source code:

import jgromacs.data.Structure;

Alternatively, you can import the entire jgromacs.data subpackage:

import jgromacs.data.*;

Compiling and running the example codes

The library of example codes can be downloaded as a gzipped tar file;
jgromacs_v1_examples.tgz. This file also contains an example dataset used by the
examples included in the package.

As a first step, unpack the tgz file:

 tar xvzf jgromacs_v1_examples.tgz

This will give you the directory examples/ containing 7 subdirectories.

Subdirectories examples/data, examples/input, examples/output, examples/analysis,
examples/advanced and examples/ui contain example java files organized by topic.

In addition, the subdirectory examples/dataset contains the sample dataset required
for running the example codes.

In order to compile and run an example code (for instance,
input/ReadStructures.java), use the following commands in the examples\ directory:

 javac -source 1.5 -cp XXX/jgromacs_v1_bin.jar:. input/ReadStructures.java

 java -cp XXX/jgromacs_v1_bin.jar:. input/ReadStructures

Here XXX represents the path of location where the jgromacs_v1_bin.jar package
has been downloaded to.

(Note that compiling example codes may give a list of warnings about variables that
are never read. These warnings can be ignored as these codes are not complete
programs but only illustrations of the exact usage of JGromacs methods.)

 6

Running the JUnit Test Suite

A comprehensive JUnit Test Suite can be dowloaded as a gzipped tar file;
jgromacs_v1_test.tgz. The suite contains 21 test classes with 342 test methods.

As a first step, extract the gzipped tar file:

 tar xvzf jgromacs_v1_test.tgz

This will give you the directory test/ which contains binaries (.class filess), source
codes (.java files) and an example dataset (in the subdirectory test\dataset) required
for running the test suite.

To run the tests with the junit.textui.TestRunner tool, use the following command in
the directory test/ :

 java -cp XXX/jgromacs_v1_bin.jar:junit-4.10.jar:. junit.textui.TestRunner AllTests

Here XXX represents the path of location where jgromacs_v1_bin.jar has been
downloaded to. (There should be a space after the period and before “junit.textui...”.)

Note that 2 of the 342 test methods depend on Gromacs installation as they have
been designed to test those methods of the package that are dependent on
Gromacs. This means that two tests will fail unless you set up your Gromacs
environment. The remaining 340 test methods can be executed independently of
Gromacs.

 7

Subpackages

The JGromacs API comprises 5 subpackages, each of which is a collection of
Java classes sharing a distinct function.

The largest subpackage, jgromacs.data contains 13 classes representing
different levels of structural information from single atoms and residues to
protein structures and molecular dynamics trajectories. Objects of these
classes are the basic building blocks of JGromacs applications.

The subpackage jgromacs.io contains 2 classes that provide static methods
for reading and writing Gromacs file formats (pdb, gro, ndx, xtc, trr) as well as
sequence files (fasta) and mathematical structures (matrices and vectors).

The subpackage jgromacs.db contains 2 classes that represent atom and
residue types.

The subpackage jgromacs.analysis is a collection of 6 classes that provide
static methods for a series of basic data analysis tasks from calculating
dihedral angles to extracting contact matrices to weighted superposition of
structures. Routines of the analysis toolbox operate on the classes of
jgromacs.data subpackage.

Finally, the subpackage jgromacs.ui containing 2 classes is designed to help
the development of analysis applications of user-friendly UIs. The JGromacs
user interface incorporates many aspects of the UI of Gromacs applications.

UML package diagram representing the inner structure of the JGromacs library.
Dependencies between the five subpackages are shown by arrows (an arrow is pointing from
package A to package B if package A uses the classes of package B)..

 8

Multi-level representation

The subpackage jgromacs.data contains 13 classes that represent sequence,
structure and trajectory data. The following section aims to give you a general
overview on how these hierarchically related classes represent multiple levels
of structural information.

Figure 1 presents the hierarchy of the different levels of coordinate (i.e.
structural and trajectory) data and the way they are mapped on JGromacs
classes. The parsers in the subpackage jgromacs.io provide a simple way to
read single structures/models from coordinate (PDB and GRO) files. A single
protein structure may be further decomposed to a set of polypeptide chains,
each chain is a collection of residues and each residue is composed of a set
of atoms. The position of each atom can be described by 3-dimensional
atomic coordinates.

Figure 1: Multiple levels of structural and trajectory data. Blue circles represent different

levels of data, green pentagons represent Java classes. An arrow between two blue circles
means a hierarchical relationship, while an arrow between a blue circle and a green pentagon
means a mapping between data and JGromacs objects.

As shown in Figure 1, the above-mentioned 5 levels of structural information
are represented by 4 different JGromacs classes. Single structures/models
and single polypeptide chains can be stored by objects of the class Structure.

 9

Single residues are stored by objects of the class Residue. Single atoms are
stored by objects of the class Atom. Finally, single 3-dimensional atomic
coordinates are stored by objects of the class Point3D.

On the other hand, one can import ensembles of conformations by parsing
XTC and TRR trajectory files or reading structural (e.g. NMR) ensembles from
PDB files. MD trajectories and structural ensembles can be stored by objects
of the class Trajectory. Individual frames of an MD trajectory or structural
ensemble can be retrieved either as objects of the class Structure or objects
of the class PointList which store the list of atomic coordinates only.

Mathematical objects such as 3-dimensional points, point sets and angles are
stored in objects of the JGromacs classes Point3D, PointList and Angle,
respectively.

Figure 2 shows how atomic index sets used to define subsets of atoms of
interest are represented by JGromacs classes. Atomic index sets and lists of
index sets can be read from NDX files using the parsers provided by the
jgromacs.io subpackage. Atomic index sets are stored in objects of the class
IndexSet, while lists of atomic index sets are stored in objects of the class
IndexSetList. Similarly, one can use index sets to define a subset of trajectory
frames. Index sets defining subsets of frames are stored by objects of the
class FrameIndexSet.

Figure 2: Classes for storing atomic and frame index sets. Blue circles represent different

levels of data, green pentagons represent Java classes. An arrow between two blue circles
means a hierarchical relationship, while an arrow between a blue circle and a green pentagon
means a mapping between data and JGromacs objects.

The subpackage jgromacs.data also provides classes for handling protein
sequences and alignments. Figure 3 shows how sequence and alignment
data read from FASTA files are stored in JGromacs objects. Pairwise and
multiple sequence alignments are stored in objects of the class Alignment.
Single sequences are stored in objects of the class Sequence. Single

 10

positions in an amino acid sequence are stored in objects of the class
SequencePosition.

Figure 3: Classes for storing sequence and alignment data. Blue circles represent different

levels of data, green pentagons represent Java classes. An arrow between two blue circles
means a hierarchical relationship, while an arrow between a blue circle and a green pentagon
means a mapping between data and JGromacs objects.

For further information about the classes in jgromacs.data and the other
subpackages please read the other sections of this documentation.

 11

Quick Start Guide

This section gives you a brief step-by-step tutorial to some of the basic
features of JGromacs such as reading and analysing structures, trajectories
and index sets, using protein sequence data, running Gromacs commands
from within your Java code, creating simple JGromacs applications etc.

If you are interested in the more complete documentation of all the
subpackages, classes and methods, please see the further sections of this
document or the HTML-based JavaDoc documentation on our website. You
can download an example dataset from our website in case you would like to
try out the examples below. (A more complete library of example codes is also
accessible on our webpage.)

How to read structures?

JGromacs represents structures, protein models and chains by objects of the
class Structure. Reading structures from PDB and GRO files into Structure
objects is simple. You only have to use the parsers in the class IOData. The
following lines read the contents of coordinate files into JGromacs objects:

 Structure s = IOData.readStructureFromPDB("example.pdb");

 Structure s2 = IOData.readStructureFromGRO("example.gro");

Once the structures are read into Structure objects, you can access their
properties by calling the appropriate methods of the objects. For example, the
number of atoms, residues or chains in the structure can be obtained by:

 int numOfAtoms = s.getNumberOfAtoms();

 int numOfResidues = s.getNumberOfResidues();

 int numOfChains = s.getNumberOfChains();

 12

How to read alternative protein models?

When a single PDB file contains multiple structures, you can read a particular
protein model identified by the model serial number. The following code reads
Model 2 from the PDB file into a Structure object:

 Structure s = IOData.readStructureFromPDB("example.pdb", 2);

How to read an ensemble of structures?

In case you need all models stored in a PDB file you can read the ensemble
into an array of Structure objects:

 Structure[] E = IOData.readStructuresFromPDB("example.pdb");

Alternatively, you can read an array of Structure objects from a directory. In
that case all PDB files in the directory will be read into the array. The following
parser reads all PDB files in the current directory:

 Structure[] E=IOData.readStructuresFromPDBsInDirectory ("");

How to retrieve protein chains?

You may also need to retrieve different chains from a structure and handle
them as separate Structure objects. The following code splits a single
structure (struct) containing multiple chains into an array of Structure objects
storing each chain separately.

 Structure[] chains = struct.getChains();

 13

How to retrieve residues?

In JGromacs, amino acid residues, water molecules and other molecules are
represented by objects of the class Residue. A Structure object is a collection
of Residue objects, which can be easily retrieved from the structure. For
example the following code extracts two residues from the Structure object
struct. The first residue is selected by its “residue index”, while the second is
identified by its “list index” (its position in the list of residues.)

 Residue res = struct.getResidueByIndex(24);

 Residue res2 = struct.getResidue(13);

You can access the properties of residues by calling the appropriate methods
of the Residue objects. For example, the following code obtains the name,
chain ID and 3-letter code of the residue.

 String name = res.getName();

 String chainID = res.getChainID();

 String code = res.get3LetterCode();

You can also overwrite some of the properties of the residue. For example,
the residue index can be reset by:

 res.setIndex(78);

How to retrieve atoms?

In JGromacs, atoms are represented by objects of the class Atom. A Residue
object is a collection of Atom objects, which can be easily retrieved from the
residue. For example, the following code extracts two atoms from the Residue
object res. The first atom is selected by its “atom index”, while the second is
identified by its “list index” (its position in the list of atoms.)

 14

 Atom atom = res.getAtomByIndex(91);

 Atom atom2 = res.getAtom(100);

On the other hand, atoms can be directly accessed from Structure objects.
For example, the following code retrieves an atom of given index from a
Structure object struct:

 Atom atom = struct.getAtomByIndex(77);

You can access and reset the properties of atoms by calling the appropriate
methods of the Atom objects. For example, the following code obtains the
occupancy and resets the B-value of the atom:

 double occupancy = atom.getOccupancy();

 atom.setBvalue(24.19);

How to extract special atoms from residues?

The methods of Residue class make it simple to retrieve atoms of interest.
Suppose res represents an amino acid residue. You can get for example the
alpha carbon atom, N-terminal nitrogen atom or carbonyl oxygen atom by:

 Atom alphaCarbon = res.getAlphaCarbon();

 Atom NTerminalNitrogen = res.getNTerminalNitrogen();

 Atom carbonylOxygen = res.getCarbonylOxygen();

How to retrieve atomic coordinates?

Atomic coordinates are represented as 3-dimensional points by objects of the
class Point3D. Each Atom object contains a Point3D object to store its (x,y,z)
coordinates. You can access the coordinates of a single atom or even retrieve

 15

the coordinates of all atoms in a structure as a PointList object. The class
PointList represents a list of 3-dimensional points which can be transformed
by mathematical operations. The following code extracts the coordinates of a
single atom (atom) as a Point3D object. It then retrieves the list of coordinates
of all atoms in a structure (struct) as a PointList object:

 Point3D coordinates = atom.getCoordinates();

 PointList allCoordinates = struct.getAllAtomCoordinates();

You can also move atoms to different positions by resetting the coordinates of
a single atom or all atoms in a structure:

 atom.setCoordinates(new Point3D(1.1,-4.3,3.9));

 struct.setAllAtomCoordinates(allCoordinates);

How to rotate a set of points

Simple geometric transformations such as rotation and translation can be
applied on a set of points. For example, the following code rotates the points
in a PointList object (points) using a given rotation matrix:

 points.rotate(rotationMatrix);

How to calculate inter-atomic distances?

The distance between two atoms or two points are easy to calculate. The
following code gives the distance between two points (p1 and p2) and two
atoms (atom1 and atom2):

 double distance = p1.distance(p2);

 double distance2 = atom1.distance(atom2);

 16

In addition you can calculate the distance between two residues (res1 and
res2) that may mean the distance between their alpha carbon atoms, their
closest atoms or their closest heavy (non-hydrogen) atoms:

 double distance = res1.distanceAlphaCarbons(res2);

 double distance2 = res1.distanceClosest(res2);

 double distance3 = res1.distanceClosestHeavy(res2);

How to calculate dihedral angles?

In JGromacs, angles are represented by objects of the class Angle. You can
easily calculate a number of relevant angles in a structure. For example, the
following code calculates the dihedral angle Psi of the residue of index 18 in
the Structure object struct. Secondly, it calculates the side chain dihedral
angle Chi2 of the same residue:

 double psi = Angles.getDihedralPsi(struct, 18);

 double chi2 = Angles.getDihedralChi2(struct, 18);

How to deal with atom and residue types?

In JGromacs, atom and residue types are represented by objects of the
classes AtomType and ResidueType. Each Atom objects contains an
AtomType object defining the type of the atom. Similarly, each Residue object
contains a ResidueType object defining the type of the residue. You can
access or reset atom and residue types:

 AtomType atype = atom.getAtomType();

 ResidueType rtype = res.getResidueType();

 atom.setAtomType(new AtomType(“Na”));

 res.setResidueType(new ResidueType(“His”));

 17

How to read atomic index sets?

Index sets are collections of atomic indices that are useful for defining subsets
of atoms in a structure. Gromacs stores index sets in NDX files that you can
read using the parsers in the class IOData. In JGromacs, index sets are
represented by objects of the class IndexSet. For example, the following code
reads the first index set from an NDX file into an IndexSet object:

 IndexSet iSet = IOData.readIndexSetFromNDX("example.ndx");

Alternatively, if your NDX file contains multiple index sets, you can read the
the whole list of index sets into an IndexSetList object:

 IndexSetList iList =
 IOData.readIndexSetListFromNDX("example.ndx");

An IndexSetList object is a simple list of index sets which you can access by
referring to their names or list indices. You can also add new index sets to the
list etc. For example, the following code gets two index sets from the
IndexSetList object iList by referring to their list index and name. Then it adds
a new empty index set of the name “Anything” to iList.

 IndexSet iSet = iList.getIndexSet(1);

 IndexSet iSet2 = iList.getIndexSet(“SideChain”);

 iList.addIndexSet(new IndexSet(“Anything”));

How to define more complex index sets?

You can use the basic set operations (intersection, union, subtraction) to
define index sets of complex criteria. For example, the following code creates
an index set which is the union of two index sets (set1 and set2) from which a
third index set (set3) is subtracted:

 18

 IndexSet result = set1.union(set2);

 result = result.subtract(set3);

How to extract substructures using index sets?

Index sets can be used to extract a subset of atoms of interest from a
Structure object. The substructure defined by the index set is retrieved as
another Structure object. The following code extracts the substructure defined
by the index set iSet from the Structure object struct:

 Structure subStructure = struct.getSubStructure(iSet);

How to extract default index sets from structures?

Given a Structure object, you can generate 12 default index sets: System (all
the atoms in the system), Protein (all protein atoms), Protein-H (all protein
atoms except hydrogens), C-alpha (alpha carbon atoms), Backbone (all
backbone atoms), MainChain (backbone atoms plus carbonyl oxygens),
MainChain+Cb (main chain atoms plus beta carbons), MainChain+H (main
chain atoms plus hydrogens), SideChain (all non-main chain atoms),
SideChain-H (all side chain atoms except hydrogens), Non-Protein (all non-
protein atoms) and Water (all water atoms). Gromacs has the same definition
for these 12 default index sets. For example, the following code will give you
the index sets corresponding to alpha carbon and side chain atoms. The
index set defining alpha carbon atoms is then used to extract a Structure
object containing these atoms only:

 IndexSet alphaCarbons = struct.getAlphaCarbonIndexSet();

 IndexSet sideChains = struct.getSideChainIndexSet();

 Structure alpha = struct.getSubStructure(alphaCarbons);

 19

How to use protein sequence data?

In JGromacs, amino acid sequences are represented by objects of the class
Sequence. You can read protein sequences from FASTA files using the
parser in the input/output class IOData. Another option is retrieving the amino
acid sequence from a Structure object representing a protein. Pairwise or
multiple sequence alignments can also be read from FASTA files into objects
of the JGromacs class Alignment. For example, the following code reads a
sequence from a FASTA file into a Sequence object. It also extracts the
protein sequence from a Structure object (struct). Finally, it reads an
alignment from a FASTA file into an Alignment object:

 Sequence seq =
 IOData.readSequenceFromFASTA(“example.fasta”);

 Sequence seq2 = struct.getSequence();

 Alignment align =
 IOData.readAlignmentFromFASTA(“example2.fasta”);

JGromacs makes it simple to integrate sequence and structure/trajectory
data. Suppose you would like to compare the dynamics of conserved residues
across a set of homologous proteins. Starting from a multiple sequence
alignment, you may need to retrieve the index sets of those residues in each
protein that are not aligned to gaps in the alignment. These index sets can be
used for further analysis; e.g. comparing the RMSF fluctuations of conserved
residue positions. For example, starting from an Alignment object (align), the
following code extracts the index sets of match positions (i.e. columns where
there is no gap in the alignment) of the first and second sequences:

 IndexSet iSet1 = align.getMatchPositionIndices(0);

 IndexSet iSet2 = align.getMatchPositionIndices(1);

How to read trajectories?

In JGromacs, trajectory data are stored in objects of the class Trajectory. The
input/output class IOData provides parsers that make it simple to read data

 20

from XTC and TRR files into Trajectory objects. A Structure object is also
necessary for initializing the trajectory, since XTC and TRR files contain only
coordinate data. The following code first reads a GRO file into a Structure
object. Secondly, it reads an XTC and a TRR file into Trajectory objects.

 Structure s = IOData.readStructureFromGRO(“example.gro”);

 Trajectory sim = IOData.readTrajectory(s, “example.xtc”);

 Trajectory sim2 = IOData.readTrajectory(s, “example.trr”);

Note, the code above works only if Gromacs is installed on your machine, as
it makes use of the “gmxdump” Gromacs command to process trajectory files.
Alternatively, if your XTC or TRR file has already been preprocessed by the
“gmxdump –f filename > example.dat” command, the dumped file can be read
by the following parser which works independently of the Gromacs package:

Trajectory sim = IOData.readDumpedTrajectory(s,“example.dat”);

How to obtain simulation frames?

Frames of a trajectory can be extracted either as a Structure object or as a
PointList object. The following code retrieves two frames from the Trajectory
object sim by referring to the frame indices:

 Structure frame = sim.getFrameAsStructure(111);

 PointList frame2 = sim.getFrameAsPointList(222);

It is also simple to add or remove frames to or from a Trajectory object. For
example, the following code adds a new frame defined by a PointList object
(newframe) and removes the frame of the index 1234:

 sim.addFrame(newframe);

 sim.removeFrame(1234);

 21

How to extract segments of trajectories?

You can retrieve a certain segment of a trajectory by selecting its first and last
frames and sampling frequency. The segment trajectory is returned as a
Trajectory object. For example, the following code extracts 100 frames from
the Trajectory object sim. The first and last frames of the resulting segment
are the 1000th and the 4000th frames of the original trajectory and every 30th
frame is retrieved:

 Trajectory segment = sim.getSubTrajectory(1000,4000,30);

How to extract subtrajectories using index sets?

Index sets can be used to extract trajectories that contain only subsets of
atoms. The subtrajectory defined by the index set is retrieved as another
Trajectory object. The following code extracts the subtrajectory defined by the
index set iSet from the Trajectory object sim:

 Trajectory subTrajectory = sim.getSubTrajectory(iSet);

How to get String representations of objects?

Every JGromacs object has a String representation, because all JGromacs
data classes implement the toString() method. For example, the following
code prints out the String representations of a Structure object (struct), a
Residue object (res), an Atom object (atom) and a Trajectory object (sim):

 System.out.println(struct);

 System.out.println(res);

 System.out.println(atom);

 System.out.println(sim);

 22

Some JGromacs data classes also provide a method called toStringInfo()
which give you summary information about the given object. For example, the
following code prints out the summary information about a Sequence object
(seq) and a Structure object (struct):

 System.out.println(seq.toStringInfo());

 System.out.println(struct.toStringInfo());

How to calculate the contact matrix

The subpackage jgromacs.analysis provides you with a basic analysis toolbox
covering a range of topics implemented in 6 classes: Distances, Dynamics,
Angles, GNM, Similarity and Superposition. Analysis tools are static methods,
so you can access them without creating instances of these classes. For
example, the following code uses the method getContactMatrix() of the class
Distances to calculate the contact matrix of a protein structure. The input
structure is represented by a Structure object (struct). In this example, the
distance between two residues is defined as the distance between their alpha
carbon atoms. The distance cutoff defining contacts is set to 7 Angstroms:

 Matrix contacts = Distances.getContactMatrix(struct,
 Distances.ALPHACARBON, 0.7);

How to superpose two structures

Another example for the use of the jgromacs.analysis toolbox is the
superposition of two protein structures. The following code performs
unweighted superposition of a Structure object (struct) and a reference
Structure object (reference), minimising the RMSD between the two
structures. The resulting Structure object is the superposed version of the
input structure:

 Structure result = Superposition.superposeTo(struct, reference);

 23

How to extract distance time series

A third example for the use of the jgromacs.analysis toolbox is the way you
can get the time series of the distance between two atoms in the course of a
trajectory. For example, the following code retrieves the time series of the
distance between two atoms selected by their indices (103 and 204):

 ArrayList<Double> timeseries =
 Distances.getDistanceTimeSeries(sim, 103, 204);

How to do PCA

A fourth example for the use of the jgromacs.analysis toolbox is Principal
Component Analysis (PCA) of trajectory data. The following code performs
PCA of a trajectory represented by a Trajectory object (sim). The Matrix array
returned contains two elements: the diagonal eigenvalue matrix and the
matrix containing the corresponding principal component vectors:

 Matrix[] result = Dynamics.getPCA(sim);

 Matrix D = result[0]; // Eigenvalues

 Matrix V = result[1]; // PC vectors

How to create JGromacs applications

Adding a simple but smart command line user interface to your Java
application is easy. You just have to create a class that extends the class
Application of the subpackage jgromacs.ui. Doing so, your application will
have a UI that incorporates many aspects of the Gromacs command line UI.
For example, the following code creates a class extending the parent class
Application:

 public class MyApplication extends Application {

 24

Within the constructor of your class, you have to set the name of the XML
configuration file you use to configure the UI of your application. In addition,
you may set if you would like your application to write a log file. For example,
the following constructor defines the name of the XML configuration file
(myfile.xml), the name of the log file (mylogfile.log) and makes the application
to write a log file:

 public MyApplication() {
 super();
 XMLFileName = “myfile.xml”;
 setLogFileName(“mylogfile.log”);
 setWritingToLogFile(true);
 }

Do not use the main() method of your class as the entry point of your
application. Instead, let the method main() just contain the following code:

 public static void main(String[] args) {
 MyApplication app = new MyApplication();
 app.run(args);
 }

Override the method runCore() of the parent class Application. The method
runCore() will be the entry point of your application, you can insert your own
code here:

 public void runCore() {

 // Your code: the program itself

 }

Within runCore() you can access the arguments given by the user in the
command line. The list of arguments handled by your application can be
specified in the XML configuration file. (See the description of the syntax of
XML configuration files on page 36.) Command line arguments are identified
by unique flags (String IDs). For example, the following code checks if the
argument defined by flag “-n” is given by the user and returns the parameter
value assigned to the argument defined by flag “-s”:

 25

 boolean given = isArgumentGiven(“n”);

 String value = getArgumentValue(“s”);

In case the user runs your application with the only argument “-h”, as in
Gromacs, a help page will show up summarizing the meta data and options of
the application.
Within runCore() you can also write text to the log file at any point:

 writeToLogFile(“This text is going into the log file”);

For more information on creating applications with JGromacs UI, see the
separate section on page 35. You may also want to look at the class
TemplateApplication in jgormacs.ui and the example code UIDemo that
demonstrate the correct structure of JGromacs applications.

How to write data back to Gromacs files?

Would you like to save your data to the disk in Gromacs file formats? Methods
of the input/output class IOData let you write JGromacs objects back to
Gromacs files. This makes it possible to integrate Java and Gromacs tools
into a single data analysis pipeline. For example, the following code writes a
Structure object (struct) to GRO and PDB files. A Sequence object (seq) is
written to a FASTA file. An Alignment object (align) is saved to a FASTA file.
An IndexSet object (iSet) is written to an NDX file. Finally, an IndexSetList
object (iList) is saved to an NDX file:

 IOData.writeStructureToGRO(“output.gro”,struct);

 IOData.writeStructureToPDB(“output.pdb”,struct);

 IOData.writeSequeceToFASTA(“output.fasta”,seq);

 IOData.writeAlignmentToFASTA(“output2.fasta”,align);

 IOData.writeIndexSetToNDX(“output.ndx”,iSet);

 IOData.writeIndexSetListToNDX(“output2.ndx”,iList);

 26

How to run Gromacs commands from Java code?

Another option to integrate Java and Gromacs tools is to run Gromacs
commands from within your Java code and read the resulting output files back
to JGromacs objects. The method runGromacsCommand() of the class
IOData makes it really simple to do so. You can execute any Gromacs (or
other) commands as in the Unix shell (sh). This means for example that you
can use shell pipes (>,>>,<,|) in the command String. Once the command is
executed, the output files listed in a String array are automatically read into
JGromacs objects.

For example, the following code executes the Gromacs command make_ndx
from the Java code. The Gromacs tool will create the default index sets from
an input coordinate file (example.gro). Note, that the shell pipe | is used to
write to the standard input of make_ndx. The resulting index sets are written
by make_ndx to the file output.ndx which is automatically read into an
IndexSetList object:

 String[] files = {“output.ndx”};
 Object[] result = IOData. runGromacsCommand(“echo q |
 make_ndx –f example.gro -o output.ndx”, files);
 IndexSetList iList = result[1];

 27

Example

A simple JGromacs example code is presented in this section. The example
illustrates how to retrieve and compare conformational ensembles using
JGromacs. The code first reads trajectory data from a TRR file then calculates
the medoid frame of the trajectory based on the standard RMSD similarity
measure. After that it extracts the subset of frames that are more similar to the
medoid frame than a RMSD cutoff of 0.1 nm. Finally, the resulting ensemble
of conformations and the total conformational ensemble of the trajectory are
compared by calculating the ensemble averaged RMSD (Brüschweiler, 2002)
between the two sets.

Note that the medoid frame is calculated as a PointList object using the
getMedoidRMSD() method of class Similarity in the jgromacs.analysis
toolbox. The subset of simulation frames similar to the medoid is defined by a
FrameIndexSet object calculated with the findSimilarFramesRMSD() method
of class Similarity. The ensemble averaged RMSD (eRMSD) is computed by
the method getEnsembleAveragedRMSD() of class Dynamics in the
jgromacs.analysis package. Since this method takes two Trajectory objects as
input, the selected frames are first extracted as a subtrajectory.

 // Reading trajectory data from TRR file
 Structure s = IOData.readStructureFromGRO(“calpha.gro”);
 Trajectory t = IOData.readTrajectory(s,”calpha.trr”);

 // Calculating medoid frame of the trajectory
 PointList medoid = Similarity.getMedoidRMSD(t);

 // Retrieving frames that are similar to the medoid
 FrameIndexSet frames =
 Similarity.findSimilarFramesRMSD(t, medoid, 0.1);

 // Extracting similar frames as a subtrajectory
 Trajectory t2 = t.getSubTrajectory(frames);

 // Calculating ensemble averaged RMSD
 double eRMSD = Dynamics.getEnsembleAveragedRMSD(t,t2);

 // Printing out the result
 System.out.println(“eRMSD: ”+eRMSD);

For a further list of downloadable example codes see the next section.

 28

Example codes

The following library of example codes can be downloaded from our website.

Package: input

ReadDataMatrix.java – How to read Matrix and ArrayList objects from file
ReadIndexSets.java – How to read index sets and index set lists from NDX file
ReadSequences.java – How to read sequences and alignments from FASTA file
ReadStructures.java – How to read structures from PDB or GRO file
ReadTrajectory.java – How to read trajectories from XTC or dXTC (dumped XTC) file

Package: output

WriteDataMatrices.java – How to write Matrix and ArrayList objects to file
WriteIndexSets.java – How to write index sets or index set lists to NDX file
WriteSequences.java – How to write sequences or alignments to FASTA file
WriteStructures.java – How to write structures to PDB or GRO file

Package: data

IndexSets.java – How to use index sets and index set lists
PointLists.java – How to use point lists and points
Sequences.java – How to use sequences, sequence positions and alignments
Structures.java – How to use structures, residues and atoms
Trajectories.java – How to use trajectories, frames and frame lists

Package: analysis

ContactMatrices.java – How to calculate contact matrices
Dihedrals.java – How to calculate dihedrals and other angles of interest
DistanceMatrices.java – How to calculate distance matrices
DistanceMisc.java – How to do miscellaneous things about distances
DistanceTimeSeries.java – How to extract distance time series data
DynamicsMisc.java – How to do miscellaneous things about dynamics
FindFrames.java – How to extract simulation frames of interest
Fluctuations.java – How to calculate residue fluctuations
GaussianNetworkModel.java – How to use Gaussian Network Models
PCA.java – How to perform Principal Component Analysis (PCA)
Similarities.java – How to calculate similarity of conformations
Superposing.java – How to superpose structures

Package: ui

UIDemo.java – How to build an application with JGromacs user interface

Package: advanced

WaterInBindingPocket.java – How to find water molecules in the binding pocket
MDvsGNM.java – How to compare fluctuation profiles from MD and GNM
ConservedResidues.java – How to compare the dynamics of conserved residues
CompareEnsembles.java – How to select and compare conformational ensembles
WeightedSuperposition.java – How to calculate weighted superposition of two structures
CompareContacts.java – How to compare residue contacts in different conformations
CheckSampling.java – How to check the sampling in a simulation
DistanceDistributions.java – How to normalize atomic distances

 29

Classes

JGromacs is a lightweight library comprising a total of 25 Java classes:

Subpackage jgromacs.data
Class Atom
Class Residue
Class Structure
Class Trajectory
Class IndexSet
Class IndexSetList
Class Sequence
Class SequencePosition
Class Alignment
Class Point3D
Class PointList
Class Angle
Class FrameIndexSet

Subpackage jgromacs.io
Class IOData
Class IOMath

Subpackage jgromacs.db
Class AtomType
Class ResidueType

Subpackage jgromacs.analysis
Class Distances
Class Dynamics
Class Superposition
Class Angles
Class Similarity
Class GNM

Subpackage jgromacs.ui
Class Application
Class TemplateApplication

 30

Descriptions of classes

Below is a brief description of each class found in the JGromacs v1.0. API.
For a more detailed description of all methods of all classes, please read the
JGromacs JavaDoc documentation downloadable from the project’s website.

Subpackage jgromacs.data

This subpackage contains classes that represent different levels of structural
data. JGromacs objects have a hierarchical relationships, e.g. an object
representing a residue is a collection of objects representing atoms while an
object representing a structure is a collection of objects representing residues.
This object-oriented representation makes it easier to access and manipulate
structural and trajectory data. Data can be imported from Gromacs files (of
PDB, GRO, NDX, XTC and TRR formats) and FASTA files into six classes
called Structure, Trajectory, IndexSet, IndexSetList, Sequence and Alignment.
Parsers for reading Gromacs files are provided by the class IOData in
subpackage jgromacs.io. This class also contains static methods for writing
data back to Gromacs files.
Note that all classes in subpackage jgromacs.data implement the methods
equals(), clone(), and toString(). Classes Residue, Structure, IndexSet,
IndexSetList, Sequence, Alignment and PointList also provide a method
called toStringInfo() that returns summary information about the object.

 Class Atom
Objects of this class represent a single atom. An Atom object has a name,
index, atom type and (x,y,z) coordinates. Atomic coordinates are stored in
Point3D objects. The type of the atom is stored in an object of class
AtomType found in the subpackage jgromacs.db.
Methods: The class Atom provides getter and setter methods to return and
set the properties of the atom. The class also contains a method for
calculating the Euclidean distance between two atoms. Methods for
recognizing particular atom types (e.g. gamma carbon, N-terminal nitrogen,
carbonyl oxygen) are also included.

 Class Residue
Objects of this class represent a single residue. A Residue object has a name,
index, residue type and chain ID. In addition, a Residue object is a collection
of Atom objects. The type of the residue is stored in an object of class
ResidueType found in the subpackage jgromacs.db.
Methods: The class Residue provides getter and setter methods to return
and set the properties of the residue. Methods for modifying the residue (i.e.
modifying its atoms or atomic coordinates) are included. There are methods
for extracting particular atoms (e.g. alpha carbon, C-terminal carbon, delta
carbon) and particular index groups (e.g. main chain atoms, side chain
atoms). The class contains methods for calculating the distance between two

 31

residues based on different definitions (e.g. distance between alpha carbon
atoms, distance between closest atoms etc.)

 Class Structure
Objects of this class represent a single protein structure. A Structure object
has a name and is a collection of objects of the class Residue.
Methods: The class Structure provides getter and setter methods to return
and set the properties of the structure. A series of methods for modifying the
structure (i.e. modifying its residues, atoms or atomic coordinates) are also
provided. There are methods for extracting special index groups (e.g. heavy
protein atoms, backbone atoms, heavy side chain atoms). Additional methods
such as retrieving the protein sequence from the structure or returning sub-
structures are also included.

 Class Trajectory
Objects of this class represent a molecular dynamics trajectory. A Trajectory
object has a name, start time and time step. In addition, a Trajectory object is
a list of simulation frames which can be extracted as Structure or PointList
objects.
Methods: The class Trajectory provides getter and setter methods to return
and set the properties of the trajectory. Methods for modifying the trajectory
(i.e. adding and removing frames) are also included. The class contains
additional methods for retrieving a certain subset of frames from the
simulation.

 Class IndexSet
Objects of this class represent a single atomic index set. An IndexSet object
has a name and is a collection of atomic indices.
Methods: The class IndexSet provides getter and setter methods to return
and set the properties of the index set. Methods for modifying the index set
(i.e. adding and removing indices) are included. The class contains methods
that implement basic set operations (intersection, subtraction and union)
between index sets enabling to define atomic index sets of complex criteria.

 Class IndexSetList
Objects of this class represent a list of IndexSet objects.
Methods: The class IndexSetList provides getter methods to return the
properties of the list. Methods for modifying the index set list (i.e. adding and
removing index sets) are also included. The class contains an additional
method for returning the union of all index sets as a single index set.

 Class Sequence
Objects of this class represent a single protein sequence. A Sequence object
has a name and is a collection of SequencePosition objects.
Methods: The class Sequence provides getter and setter methods to return
and set the properties of the amino acid sequence. Methods for modifying the
sequence (i.e. adding, inserting and removing sequence positions and gaps)

 32

are included. The class contains additional methods such as extraction of
sub-sequences, reversing and concatating sequences etc.

 Class SequencePosition
Objects of this class represent a single sequence position which is the
building block of Sequence objects. A SequencePosition object has an index,
residue type and annotation. The type of the residue is stored in an object of
class ResidueType found in the subpackage jgromacs.db.
Methods: The class SequencePosition provides getter and setter methods to
return and set the properties of the sequence position.

 Class Alignment
Objects of this class represent a multiple sequence alignment. An Alignment
object has a name and is a collection of Sequence objects.
Methods: The class Alignment provides getter and setter methods to return
and set the properties of the alignment. Methods for modifying the alignment
(i.e. adding and removing sequences or alignment columns) are also
included. The class provides additional methods such as extracting the
consensus sequence and calculating the collapsed alignment (i.e. columns of
the alignment that do not contain gaps) etc.

 Class Point3D
Objects of this class represent a single 3-dimensional point or the vector
pointing to this point from the origin.
Methods: The class Point3D provides getter and setter methods to return and
set the coordinates of the point. The class also contains a method for
calculating the Euclidean distance between two points. Methods implementing
basic vector operations such as addition and subtraction of two vectors,
multiplication by scalar, inner product and cross product are also included.

 Class PointList
Objects of this class represent a list of Point3D objects.
Methods: The class PointList contains methods for modifying the point list
(i.e. adding and removing points). Additional methods for rotating and
translating the point set and calculating its centroid are also included.

 Class Angle
Objects of this class represent a single angle. The value of the angle can be
converted between degrees and radians.

 Class FrameIndexSet
Objects of this class represent a frame index set (defining a subset of
trajectory frames). A FrameIndexSet object has a name and is a collection of
frame indices.
Methods: The class FrameIndexSet provides getter and setter methods to
return and set the properties of the frame index set. Methods for modifying the
frame index set (i.e. adding and removing indices) are included. The class
contains methods implementing basic set operations (intersection, subtraction

 33

and union) between frame index sets that make it possible to define frame
index sets of complex criteria.

Subpackage jgromacs.io

This subpackage contains 2 classes providing static input/output methods for
classes in the subpackage jgromacs.data. JGromacs can read and write PDB,
GRO, XTC, TRR, dumped XTC and TRR, NDX and FASTA files. Matrices
and vectors can also be read from and saved to text files.

 Class IOData
IOData provides input and output methods for Structure, Trajectory, IndexSet,
IndexSetList, Sequence and Alignment objects. Note that JGromacs
understands the format of dumped XTC and TRR files: i.e. the standard
output of the “gmxdump –f file.xtc” command of Gromacs. It can read either a
previously dumped trajectory file or a raw XTC/TRR file by calling gmxdump
as an external command. The second option requires Gromacs (gmxdump) to
be installed. IOData provides a method for running external Gromacs
commands from within the Java code and automatically reading the output
files in as JGromacs objects.

 Class IOMath
IOMath provides input and output methods for ArrayList and jama.Matrix
objects.

Subpackage jgromacs.db

This subpackage contains 2 classes defining atom and residue types. Atom
and Residue objects have types defined by these classes.

 Class AtomType
Objects of this class represent a certain atom type which can be any element
of the periodic table. Each Atom object contains an AtomType object
specifying the type of the atom.
Methods: The class AtomType provides methods for returning the name and
code of the atom type.

 Class ResidueType
Objects of this class represent a certain amino acid type which can be any of
the 20 standard amino acids. It can also represent a water molecule or an
unknown residue. Each Residue object contains a ResidueType object
specifying the type of the residue.
Methods: The class ResidueType provides methods for returning the name
and 1-letter/3-letter code of the residue type.

 34

Subpackage jgromacs.analysis

The subpackage contains 6 classes that provide static methods for various
analysis tasks. The input arguments of these methods are objects of the
classes found in subpackage jgromacs.data. This basic analysis toolbox is
split into 6 different topics covered by the 6 classes below.

 Class Distances
This class provides static methods for analysing inter-atomic distances. It
provides methods for calculating the distance matrix of a set of points, atoms
or residues (where the distance between residues is defined either as the
distance of their alpha carbon atoms, their closest atoms or their closest
heavy atoms). The class contains methods for calculating the mean distance
matrix of a set of atoms or residues based on an ensemble of conformations.
It also provides methods for extracting the contact matrix of a structure and
the contact matrix of the mean structure of an ensemble. It can also calculate
the frequency-based contact matrix in which two residues are said to be in
contact if they are in contact in at least a given percentage of simulation
frames.
Methods for extracting the distance time series between two atoms in the
course of a trajectory and calculating its summary statistics (mean, variance,
minimum, maximum and range) are included.
The class contains methods for retrieving those atoms in a structure that are
closer to a reference atom (or a reference set of atoms) than a given radius.
Another method is provided for finding the atom of a given atom set that is
located closest to a reference set of atoms. In addition, the class provides
methods for extracting that simulation frame in which two atoms are closest or
most distant from each other.
Other methods such as calculating the distance between a single atom and a
set of atoms or between two sets of atoms (defined as the minimum of all
pairwise distances) are also included.
Finally, the class provides methods for retrieving the index set of frames of a
trajectory in which two atoms are closer or more distant from each other than
a given distance cutoff.

 Class Dynamics
This class contains static methods for analysing protein dynamics. It provides
methods for calculating the 3Nx3N coordinate covariance and correlation
matrix and the NxN atomic covariance and correlation matrix based on a
trajectory.
Methods for principal component analysis (PCA) are also included such as
computing the principal component vectors and the corresponding
eigenvalues or calculating the cumulative variance profile.
To compare the essential modes of motion, the class provides methods for
calculating the root mean squared inner product (RMSIP) between two sets of
principal components and the covariance matrix overlap between two
covariance matrices.

 35

In order to characterise the fluctuation of residues, the root mean squared
fluctuation (RMSF) profile can also be computed. The class provides methods
for computing the F fluctuation matrix, where Fij is the variance of Dij inter-
residue distance in the course of the simulation. Methods are included to
calculate the relative fluctuation between two sets of residues (defined as the
mean of the specified fluctuation submatrix entries).
In addition, the class implements more complex concepts from the literature
such as the dynamical network of a protein (Sethi et al. 2009), the structural
radius of a conformational ensemble (Kuzmanic and Zagrovic 2010), the
ensemble averaged RMSD between two conformational ensembles
(Brüschweiler 2002) and the contact probability map of a trajectory (Wei et al,
2009).

 Class Superposition
This class contains static methods for performing unweighted and weighted
superposition of protein structures. It uses the Kabsch algorithm to find the
best rotation matrix that minimizes RMSD (Root Mean Squared Deviation)
between two sets of points.

 Class Angles
This class provides static methods for calculating the angles between vectors
and planes. It also contains methods for calculating angles of interest
including backbone dihedrals (Phi, Psi) and side chain dihedrals (Chi1, Chi2,
Chi3, Chi4 and Chi5) in protein structures and their time series based on a
trajectory. A method for calculating the Ramachandran plot is also included in
the class.

 Class Similarity
This class contains static methods for measuring the structural similarity
between two protein conformations. Different measures of structural similarity
(e.g. RMSD: coordinate RMSD, dRMSD: distance RMSD, wdRMSD: weighted
distance RMSD) can be calculated.
The class also provides methods for measuring the deviation of a single atom
between two structures (using different definition: RMSDi, dRMSDi,
wdRMSDi).
Methods for calculating the similarity matrix of a set of conformations using
different definitions of structural similarity (e.g. RMSD, dRMSD, wdRMSD) are
also included. The class provides methods for retrieving the time series of
similarity between consecutive simulation frames compared to a common
reference structure.
Methods for calculating the medoid structure of a trajectory using RMSD or
dRMSD similarity measures are also available.
Finally, the class contains methods for computing the difference distance
matrix between two point sets or two structures. In addition, a method is
provided for extracting the index set of frames of a trajectory that are more
similar to a reference frame than a similarity (RMSD or dRMSD) cutoff.

 36

Definitions used in class Similarity:

– RMSD(A,B):
 RMSD similarity between two structures A and B after superposition
– dRMSD(A,B) = sqrt(1/(N^2) sum_{ij}^N((d_{ij}^A- d_{ij}^B)^2))
 where d_{ij}^A is the distance of atom i and j in structure A.
– wdRMSD(A,B) = sqrt(1/W sum_{ij}^N(w_{ij}(d_{ij}^A- d_{ij}^B)^2))
 where w is the weight matrix and W= sum_{ij}^N w_{ij}
– RMSDi(A,B):
 the deviation of atom i between its positions in structure A and B
 after superposition of the two structures
– dRMSDi(A,B) = sqrt(1/N sum_j^N((d_{ij}^A- d_{ij}^B)^2))
– wdRMSDi(A,B) = sqrt(1/W sum_j^N(w_{ij} (d_{ij}^A- d_{ij}^B)^2))
 where W= sum_j^N w_{ij}

 Class GNM
This class represents a Gaussian Network Model created for a protein
structure. It provides methods for calculating the contact matrix, the Kirchhoff
matrix, the orthogonal eigenvector matrix and the diagonal eigenvalue matrix.
A method for computing the mean square fluctuation (MSF) profile is also
included.

Subpackage jgromacs.ui

This subpackage contains 2 classes that facilitate the development of
JGromacs applications that have user-friendly interfaces. Some features of
Gromacs UI such as command line argument handling, log files, help
messages and index group queries are incorporated in JGromacs UI as well.
Developing a JGromacs application involves writing the core code and
configuring the application interface through an XML file.

 Class Application
This is the parent class of JGromacs applications. Applications extending this
class have a JGromacs user interface that can be easily configured with the
help of an XML configuration file. The class does not have public methods.
The protected method runCore() must be implemented in the child class: it is
the entry point of the application. Protected methods isArgumentGiven() and
getArgumentValue() can be used in the child class to access command line
arguments provided by the user. For more information on writing JGromacs
applications please see page 35.

 Class TemplateApplication
This is a template class for writing JGromacs applications.
TemplateApplication extends class Application. As it is described by the
comments in this class, the programmer needs to insert his own code in the
method runCore() which overrides the method runCore() of class Application.

 37

JGromacs user interface

The subpackage jgromacs.ui provides a tool to create Java applications with a
command line user interface. The JGromacs UI incorporates many aspects of
the Gromacs UI, supporting help messages, log files, command line argument
parsing and can easily be set up with an XML configuration file.

To create a Java application that communicates with the user via a JGromacs
user interface, the following steps need to be done:

1. Create a class that extends the class Application (of jgromacs.ui)

2. Create a configuration XML file that defines the UI of your application.
In the constructor of your class set the name of the XML file
(XMLFileName = …).

3. Within the main(String[] args) method of your class create an object of

your class and call the run(args) method of this object (passing over
the args argument of main()). This is the only code main() should
contain.

4. Override the method runCore() in your class and insert your own code

here. Instead of the method main(), the method runCore() will be the
entry point of your Java program.

5. Within runCore() you can access the arguments given by the user in

the command line. Use the methods isArgumentGiven() and
getArgumentValue().

6. Within the constructor of your class you can set if your application

writes a log file. The name of the log file can be defined here as well.
Use the methods setWritingToLogFile() and setLogFileName().

7. You may want to write text to the log file on the fly. Use the method

writeToLogFile() within runCore()

(Note that class TemplateApplication as well as the example code UIDemo
demonstrate the correct structure of JGromacs applications.)

 38

What is the XML configuration file for?

The XML configuration file provides a simple way to define meta information
about the application (application name, description, author name, version
number) and to define the list of command line arguments to be handled by
the program. Each command line argument is defined by its argument flag,
description and default value.

Syntax of the XML configuration file:

The whole content of the XML file must be between
<application> and </application> tags

First part of XML file:
Between <meta> and </meta> tags: meta information about the application:
 Between <name> and </name> tags: name of the application
 Between <description> and </description> tags: description of the
 application
 Between <author> and </author> tags: developer of the application
 Between <version> and </version> tags: version of the application

Second part of XML file:
between <arguments> and </arguments> tags: definition of arguments

Each argument is defined between <argument> and </argument> tags;
 Between <flag> and </flag> tags: flag of the argument
 Between <description> and </description> tags: description of the
 argument
 Between <default> and </default> tags: default value of the argument

<argument> elements also have two attributes:
 type: type of the argument (its value can be “input”, “output” or “setting”)
 optional: is the argument optional? (its value can be “true” or “false”)

(Note that template.xml demonstrates the correct structure of XML
configuration files.)

 39

Copyright notice

JGromacs v1.0. Documentation is licensed under a Creative Commons
Attribution-NoDerivs 3.0 Unported License.

JGromacs v1.0. is written by Márton Münz and Philip C Biggin.
Copyright (c) University of Oxford, United Kingdom
visit http://sbcb.bioch.ox.ac.uk/jgromacs/

JGromacs v1.0. is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

JGromacs v1.0. is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License
along with JGromacs v1.0. If not, see http://www.gnu.org/licenses/.

JGromacs v1.0. includes the Java linear algebra package JAMA which
has the following Copyright Notice:

JAMA is a cooperative product of The MathWorks and the National Institute of
Standards and Technology (NIST) which has been released to the public
domain. Neither The MathWorks nor NIST assumes any responsibility
whatsoever for its use by other parties, and makes no guarantees, expressed
or implied, about its quality, reliability, or any other characteristic.

http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/

